
Reduced-order Decomposition and Coordination 
approach for Markov-based Stochastic UC with 

Distributed Wind Farms and BESS  

Abstract—To achieve carbon neutrality, US states are enhancing 
renewable energy use and encouraging battery integration. This 
paper addresses the challenges posed by renewable energy 
uncertainties in resource operation. We formulate unit 
commitment (UC) with distributed wind generation and grid-
scale batteries as a Markov-based stochastic problem. Due to 
scalability issues with increasing wind farms, we decompose the 
model into approximate area subproblems using reduced-order 
models and Principal Component Analysis (PCA). These 
subproblems are efficiently resolved and coordinated through a 
Surrogate Absolute-Value Lagrangian Relaxation-based 
framework. The simulation results on the IEEE 118-bus system 
with 75% wind penetration level have demonstrated the 
effectiveness and efficiency of the proposed method at managing 
these complexities and highlight the potential benefits of 
integrating batteries. 

Index Terms—Distributed wind, Markov processes, Renewable 
integration, SAVLR, Stochastic UC. 

I. INTRODUCTION 
In pursuit of decarbonizing the electric grid, New England 

aims to increase its renewable energy share to 50% by 2040, 
as per state policies [1]. Wind energy represents 66% of new 
proposals in the ISO New England Interconnection Queue, 
followed by solar at 16% and battery energy storage systems 
(BESSs) at 14%. The stochastic nature of these renewables, 
however, poses significant challenges to the grid's reliable 
and cost-efficient operation, especially with such a high 
proportion of renewables in the resource mix. 

In the day-ahead UC process, it is crucial to develop 
solutions that are not only cost-efficient but also resilient to 
the uncertainties of renewable generation. Incorporating grid-
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scale BESSs alongside renewables in the UC stage enhances 
the process by utilizing their storage capacity and rapid 
ramping abilities. This integration is particularly effective in 
improving UC solutions under scenarios of high wind 
penetration. It is critical to develop accurate modeling and 
integration of renewable generation uncertainties into the UC 
formulation, in conjunction with BESSs.  

Following this, exploring the array of approaches detailed 
in literature for managing these uncertainties becomes a key 
step. The risk-averse approaches, such as Robust 
Optimization (RO) [2], Interval Optimization (IO) [3], and 
Chance-Constrained Optimization (CCO) [4, 5], prioritize 
solution feasibility over cost-effectiveness. RO specifically 
seeks an optimal solution that is feasible for the worst-case 
realizations. Although these methods ensure feasibility, they 
might not always be cost-effective or accurately represent 
actual variations, and identifying the worst-case scenarios can 
be challenging. In contrast, risk-neutral approaches like 
Stochastic Programming (SP) [6] and Markov-based 
Stochastic UC (MSUC) [7, 8] aim to minimize overall 
expected costs, making them preferable for achieving cost-
efficient solutions. This distinction is critical in selecting an 
approach that effectively balances cost-efficiency with the 
ability to handle the uncertainties associated with renewable 
energy integration. The authors favor MSUC over SP for its 
more efficient and comprehensive handling of stochasticity 
[6]. MSUC employs a Markov process that models renewable 
generation’s stochasticity based on current states, 
independent of past states. This method models stochasticity 
through states and their transitions over time (termed the 
Markovian uncertainty set), scaling linearly with the 
optimization horizon. However, despite its streamlined 
approach, the number of states in MSUC increases 
exponentially with the addition of distributed renewables. 

While recent literature has advanced in managing 
uncertainties in renewable energy integration, challenges 
persist, particularly in UC with distributed wind farms and 
BESSs. These challenges include the exponential complexity 
of accurately modeling multiple distributed wind sources and 
the handling of soft transmission capacity (TC) constraints. 
To address these issues, this paper proposes a novel reduced-

Niranjan Raghunathan, Zongjie Wang†, Bing Yan, Tianqiao Zhao, Meng Yue 

mailto:zongjie.wang@uconn.edu


order decomposition and composition approach for MSUC, 
significantly advancing the field. Key innovations and 
contributions of this paper include: 
• Development of a novel reduced-order decomposition 

and composition approach for MSUC with distributed 
wind farms, BESSs, and soft TC constraints; 

• Creation of area-perspective stochastic models that 
incorporate local and approximated nonlocal 
components, using Principal Component Analysis (PCA) 
for efficient dimensionality reduction; 

• Innovative decomposition of the complex MSUC 
problem into approximate area subproblems (AASPs), 
effectively reducing the computational complexity; 

• Introduction of a novel decomposition and coordination 
(D&C) framework based on Surrogate Absolute-Value 
Lagrangian Relaxation [9] (SAVLR-AASP), enhancing 
solution robustness and cost-effectiveness; 

• Demonstrating the effectiveness of the approach through 
Monte Carlo simulations. 

The paper is structured as follows. Section II details the 
development of the Markovian uncertainty set and MSUC 
formulation. Section III focuses on decomposing MSUC into 
AASPs, optimizing local resources through a customized, 
reduced-order Markov model. Section IV demonstrates a test 
case using the IEEE 118-bus system with 10 wind farms and 
5 BESSs, demonstrating the effectiveness and efficiency of 
the proposed SAVLR-AASP method. The results highlight its 
ability to provide robust, cost-effective solutions quickly, 
emphasizing the significant role of BESSs in reducing wind 
curtailment, alleviating network congestion, and aiding peak 
demand management. 

 
Fig. 1.  Markov model for a system with 3 distributed wind farms. 

II. MARKOV-BASED STOCHASTIC UC 
In Subsection II-A, the paper establishes the Markovian 

uncertainty set, while Subsection II-B is dedicated to 
formulating the MSUC. 
A. Markovian uncertainty set 

The Markovian uncertainty set includes global wind 
generation states, transitions between states at subsequent 
time intervals, and their probabilities. These global states 
represent combinations of discrete wind generation levels 
across all wind farms. An example of a Markov model for a 
system with three distributed wind farms is illustrated in Fig. 
1. The set of global wind generation states, { } n (where n is 
an index for tuples of wind generation levels at each 

distributed wind farm), the state probabilities, [ ] ,tϕn
and 

transition probabilities are obtained by modeling the 
evolution of wind generation at distributed wind farms as a 
time-invariant Markov process. 
B.  Markov-based Stochastic UC 
       In MSUC, the aim is to identify a set of commitment 
decisions for conventional generators that minimizes the total 
expected cost, considering unit-level constraints, system 
demand, and soft TC constraints. This total cost comprises 
commitment costs, expected dispatch costs (calculated over 
all probabilistic global states), and the average soft constraint 
penalties. Soft TC constraints are critical in this stochastic 
context, as rigidly meeting hard constraints for every possible 
wind generation state can be challenging. The approach of 
using the average of soft constraint penalties, as opposed to 
expected values, ensures equal weighting across all states, 
thereby avoiding disproportionately small penalties for 
constraint exceedances in low probability states. The 
objective function is formulated based on (9) of [7] and (1) of 
[10] as: 
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where ,t t T∈  is the time index; unit , j j J∈ , has the 
following bounded decision variables: [ ]{ }jx t are binary on/off 
status variables; [ ]{ }ju t are binary startup variables; [ ]{ }gen

, ,j op tn are 
continuous generation-levels of block , jo o O∈ for state n. 

[ ]{ }cur
, wp tn

are continuous wind curtailment levels at wind farm 
w; [ ]{ }BESS

,  bp t+
n

and [ ]{ }BESS
,  bp t−

n
are continuous charge and 

discharge levels of battery b, b B∈ , respectively; [ ]{ }/TC
l tυ + −  

are continuous variables for soft transmission capacity 
violations in the positive and negative directions, 
respectively, for line l, l L∈ . All the decision variables are 
nonnegative. Costs and penalties within (1) include startup 
costs [ ]{ }SU

j jC u t , no-load costs [ ]{ }NL
j jC x t , generation 

costs [ ]{ }, , ,  j o j oC p tn , curtailment costs [ ]{ }cur cur
,wC p tn

, charge and 
discharge costs for BESSs [ ]{ }BESS BESS

,b bC p t+ +
n

 and [ ]{ }BESS BESS
,b bC p t− −

n , 

respectively, and soft transmission capacity penalties 
{ [ ](pen,TC TC

,l lC tυ + +n  [ ])}TC
,l tυ −

n
.  

The problem is subject to the following constraints: Startup 
and generation limits are formulated as given in (3), (4), and 
(5-6) from [7], respectively; minimum up/down time 
constraints are formulated as given in (14) of [11]; ramp 



up/down constraints model the ramping capability of units 
within the time interval (e.g., 30 minutes or 1 hour), and 
couples variables in subsequent time intervals. Due to this 
coupling, ramping constraints must also consider all possible 
state transitions between subsequent time intervals. The ramp 
up/down constraints are respectively formulated as given in 
(9) and (10) of [7]. For example, ramp up constraints are 
formulated as:  

[ ] [ ] [ ]

[ ] [ ]( ) { }

gen gen
, , 1 ( )

2
1 , , | 0 ,

j
j j j j j

j j

R
p t p t R x t P

x t x t j N tπ

− − ≤ ⋅ + +

′⋅ − − ∀ ∈ ∈ >

n m

m mnm n n


 (2) 

where is [ ]gen
, jp tn  total generation of unit j and jP  is minimum 

generation level of unit j when it is online. It also includes 
constraints for BESSs, such as charging and discharging 
constraints, SoC tracking, and initial and terminal SoC 
conditions to ensure adequate charging at the start of each 
day. System demand constraints are integrated to match the 
total output from generators, BESSs, and wind farms with the 
net demand (total demand minus battery charging and wind 
curtailment) across all global states, in line with (2) from 
[10]. Lastly, soft TC constraints for all wind generation states 
are formulated following (3) from [10]. 

III. SOLUTION METHODOLOGY 
Subsection IV-A details the development of area-

perspective Markov models using a PCA-based method, 
while Subsection IV-B introduces the novel SAVLR-based 
decomposition and coordination framework. 
A. Area-perspective Markov models  

In area-perspective models, the variation of local wind 
generation is emphasized, while that of nonlocal wind 
generation is approximated by using PCA to reduce the 
dimensionality of the nonlocal wind generation components. 
For each area a , eigendecomposition of the covariance of 
nonlocal wind generation components is performed to obtain 

,V  the orthogonal matrix of eigenvectors ,Ξ  the diagonal 
matrix of corresponding eigenvalues To reduce 
dimensionality while retaining the maximum overall 
variance, only the eigenvectors corresponding to the κ  
largest eigenvalues are retained in V to obtain ,V  whereκ  is 
selected to balance the tradeoff between computational 
performance and model accuracy. The eigenvalues and the 
orientation of eigenvectors depend on the underlying spatio-
temporal correlation structure of distributed windfarms. 
  V spans a -dimensionalκ space D , which is a subspace of 
the space spanned by V. Let D′  be an affine subspace of D : 

{ }| ,aD D′ = + ∈d μ d  (3) 
where aμ is the mean of nonlocal wind generation 
components. Following dimension reduction, only those 
nonlocal wind generation states that intersect D′  are kept for 
the area-perspective models. An illustration of this dimension 
reduction process for a system with three wind farms is 
depicted in Fig. 2.  

Dimension reduction might not fully capture the entire 

range of possible nonlocal wind generation in area-
perspective models, so states in NLˆ

aN  are linearly scaled for 
completeness. The global wind generation states for the area 
a-perspective model, AP ,aN are then formed by combining  
local states in L

aN and nonlocal states in NL
aN . However, even 

after dimension reduction, the number of states could be large 
enough to impact the computational efficiency of AASPs. To 
address this, a state filtering method is employed, sampling 
states evenly across quartiles of aggregated generation levels 
to further streamline the number of states. 
B. SAVLR-based D&C framework 

To decompose the MSUC, initially, the system demand 
constraints are relaxed. This is achieved by incorporating the 
average value of these relaxed constraints with corresponding 
Lagrangian multipliers, into the objective function, thus 
forming the surrogate Lagrangian. The use of average value, 
as opposed to expected values over probabilistic global states, 
ensures equal weighting of constraint violations across all 
global states in the Lagrangian, mirroring the approach used 
for soft penalty terms in (1). Weighing these by state 
probabilities would disproportionately emphasize penalty 
costs for high probability states, potentially leading to 
excessive violations in low probability states in the final 
solution. Furthermore, to expedite the convergence of 
multipliers during the iterative solution process, the average 
of the absolute value of relaxed demand constraints, 
multiplied by the SAVLR penalty coefficient c, is added to 
the Lagrangian. The absolute-value terms are linearized in a 
standard manner, the resulting Lagrangian, inclusive of the 
SAVLR penalty terms is denoted as cL . The objective for 
each AASP a  at a given iteration k  is then formulated based 
on this modified Lagrangian framework as:   
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where aJ  is the set of units in area a, { }, 1j ku −  and { }, 1j kx −  
are the fixed startup and no-load values of nonlocal units, and 
{ }D,

,
a
kλ n  are multipliers of relaxed demand constraints for 



subproblem a, and { }D, /
,kz + −

n are nonnegative linearization 
variables for linearizing the absolute-value of the demand 
constraints. AASPs comply with all original problem 
constraints, yet the extensive number of ramp rate constraints, 
arising from numerous state transitions, slows down 
computational performance. To enhance efficiency, only 
extreme transitions are factored into ramp rate constraints. 
This approach is justified under the assumption that online 
units typically adjust their generation levels (ramp down/up) 
in response to the overall wind generation’s fluctuation 
(ramping up/down). This strategic simplification significantly 
streamlines the number of transitions considered, thus 
improving computational speed.  

The AASPs are coordinated within an SAVLR-based 
coordination framework. First, the surrogate optimality 
condition requirement (S.O.C) (See [12] for more details) is 
calculated by approximating the dispatch behavior of 
nonlocal units based on latest available values of their 
commitment variables. Then, the AASP is solved until 
satisfaction of the S.O.C, after which, the multipliers 
belonging to the AASP are updated, thus facilitating 
coordination with other AASPs. The stopping condition for 
the algorithm is based on a threshold for the RMS of 
constraint violations. A flowchart of the algorithm is provided 
in Fig. 3.  

 
    Fig. 2. Example of PCA based dimension reduction. 

IV. SIMULATION STUDIES 
A test case is studied using a modified IEEE 118-bus 

system, featuring ten wind farms (accounting for 75% wind 
penetration) and five BESSs with a total capacity of 1025 
MW/MWh, distributed across six areas. The efficacy of the 
SAVLR-AASP method, using 25 global states per AASP 
(referred to as SA-25), is evaluated against deterministic 
models for expected and zero wind scenarios (labeled DET-
exp and DET-zero, respectively) and a scenario-based SP 
with 100 scenarios (SP-100).   

Solutions are verified through Monte Carlo simulations, 
utilizing wind generation scenarios derived from the original 
Markov model, enhanced with importance sampling [13, 14] 
for increased simulation efficiency. For these scenarios, an 
economic dispatch problem is solved, based on commitment 
decisions from the SAVLR-AASP method. In this context, 
demand constraints are treated as soft, with a high penalty 
coefficient (e.g., $10,000/MW), ensuring the feasibility of 
solutions. This approach guarantees that violations of these 
constraints occur only in cases where the problem is 

infeasible otherwise, maintaining solution integrity. 
 Monte Carlo simulations also test scenario problems both 

with and without BESSs, assessing their potential to enhance 
cost-efficiency and operational robustness under high wind 
penetration conditions. The algorithm’s stopping criterion is 
set at a root mean square (RMS) of demand constraint 
violations below 300 MW for all AASPs. Testing is 
conducted on an Intel Xeon CPU 2.6 GHz, 8 Cores, 64 GB 
laptop, utilizing MATLAB R2018a and CPLEX 12.8. 
Notably, the original MSUC could not be resolved using the 
branch-and-cut (B&C) algorithm in CPLEX with default 
settings, owing to the overwhelming number of variables and 
constraints required to manage all potential states. 

 
Fig. 3.  Flowchart of SAVLR with AASPs. 

Table 1 shows that SA-25 delivers a low-cost solution 
without any constraint violations in under 30 mins. While SP-
100 achieves a slightly lower cost solution, it incurs 
violations in 7 scenarios (with up to 25 MW of transmission 
capacity and 50 MW of demand violations) and requires over 
an hour. Thus, SA-25 emerges as the best overall solution, 
achieved within 27 mins. Scenarios are also solved using the 
SA-25 commitment solutions but without including BESSs, 
providing a basis for comparison. Although the actual 
benefits of BESSs are contingent on their real-time 
operational strategies, their behavior in these MC simulations 
suggests significant advantages. 

Omitting BESSs leads to approximately 2,000 MW of 
extra wind curtailment, TC constraint violations in five 
scenarios, and an average cost increase of $8,790 per 
solution. To understand how BESSs contribute to minimizing 
wind curtailment and enhancing both the robustness and cost-
efficiency of operations, an in-depth analysis of their dispatch 
behavior in Scenario 135 is conducted. Figure 4 illustrates the 
hourly aggregated operation of BESSs and wind curtailment. 
For Scenario 135, both with and without BESSs. In this 
scenario, BESSs effectively absorb the majority of wind 
energy that would otherwise be curtailed, except for 61 MW 
in hour 5. This stored energy is later released, contributing to 
reduced overall operational costs. Notably, the operational 



cost without BESSs is $20,000 higher (excluding soft 
penalties). Further analysis across more scenarios reveals that 
BESSs play a crucial role in alleviating transmission network 
congestion. They engage in energy arbitrage by charging 
during periods of high wind generation and discharging 
during times of low wind and peak demand, optimizing 
system efficiency and cost. 

  
Fig. 4.  BESS operation and wind curtailment for Scenario 135. 

V. CONCLUSIONS 
    This paper introduces an innovative decomposition and 
coordination (D&C) framework for Markov-based stochastic 
unit commitment (MSUC) with distributed wind and battery 
energy storage systems (BESS). To manage the complex 
Markov model for distributed wind generation, this paper first 
develops a principal component analysis (PCA)-based 
method that constructs area-perspective models. These 
models effectively reduce the dimensionality of the original 
Markov model, tailored to each area’s specific context while 
retaining maximal information. The MSUC is then segmented 
into approximate area subproblems (AASPs) using these 
area-perspective models. These AASPs are then iteratively 
solved, with their solutions being coordinated through the 
surrogate absolute-value Lagrangian relaxation-AASP 
(SAVLR-AASP) method. Testing on a modified IEEE 118-
bus system with ten distributed wind farms have 
demonstrated that the SAVLR-AASP approach efficiently 
achieves low-cost and robust solutions within a 30-minute 
window, a performance not matched by deterministic models 
or stochastic programming (SP) with 100 scenarios. 
     The methodology is scalable for larger systems 
incorporating ten or more distributed renewable resources, by 
effectively decomposing the MSUC into manageable 
subproblems. Moreover, the analysis of BESS operations 
reveals their significant role in reducing wind curtailment and 
relieving transmission network congestion. BESSs enhance 
operational cost-efficiency by charging during periods of high 
wind and discharging as needed, such as during peak load or 
low wind periods, especially under high wind generation 
penetration. This conclusion underlines the efficacy and 

scalability of our proposed approach in integrating 
renewables into power systems. 
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TABLE I: RESULTS FOR 118-BUS SYSTEM WITH 10 WIND FARMS (75% WIND PENETRATION) AND 5 BESSS. 

Formulation Avg. scenario 
cost Avg. penalty 

cost # of online 
units (all time) # of scenarios with 

constraint violations Total solution 
time MIP gap 

(CPLEX) Avg. AASP 
solve time 

DET-zero $459,340 $4,210 142 37 0.52s 0.17% n/a 
DET-exp $12,238,129 $11,839,669 334 873 0.55s 0.14% n/a 
SP-100  $415,940 $4,540 215 7 1h 17m 0.26% n/a 
SA-25 $417,650 $0 245 0 26m 32s n/a 13.8s 
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