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Abstract—The resilience of active distribution systems against
high-impact low-probability (HILP) events is a concern for
distribution system operators (DSOs) and operators. In the short
term, the optimal scheduling of distribution systems including
various distributed energy resources (DERs) can improve the
grid’s resilience without much extra cost and time. Considering
the reliable extra power that the DERs can supply, which is
known as the DER’s effective load-carrying capability (ELCC),
this paper aims to integrate ELCC calculations into the general
resilience-oriented distribution system scheduling methodology.
In this way, the mesh view of the distribution system is
first obtained to exactly calculate the location of the system
components. Then, scenarios are generated based on the market
characteristics and the HILP event features, such as location,
type, and severity level. Finally, the proposed methodology is
developed by integrating the generalized distribution system
scheduling methodology with ELCC calculations considering
uncertainties and carbon emissions. The proposed method is
applied to an augmented IEEE 33-bus test system with DERs.
Results show that the ELCC of DERs is a cost-effective method
to improve distribution system resilience in the short term.

Index Terms—Effective load-carrying capability, active
distribution system, grid resilience, HILP events

I. INTRODUCTION

Traditional distribution networks are gradually transforming
into active distribution networks (ADNs) because of the
integration of distributed energy resources (DERs) and smart
switches, which present huge economic and environmental
benefits [1]. In addition, integrating DERs into ADNs
can improve the resilience of such systems against high-
impact low-probability (HILP) events [2]. HILP events,
such as severe natural disasters or cyber-attacks, present
significant challenges to power systems. These rare but potent
occurrences can lead to widespread outages, emphasizing
the crucial importance of implementing robust resilience
measures to safeguard the stability and functionality of energy
infrastructure under adverse and unpredictable conditions [3].

In the literature, many papers considered the capabilities
of DERs such as wind turbines (WTs), diesel generators
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(DGs), electric vehicle parking lots (EVPs), and energy storage
systems (ESSs) to enhance the resilience of distribution
systems and local energy communities. In [2], a decarbonized
pathway was developed to improve the short-term resilience
in local energy communities considering the system and HILP
event uncertainties. In the paper, a multi-objective resilience-
cost objective function was considered to optimally schedule
the energy community including the DERs to reduce the
impacts of the HILP events. Mobile electrochemical energy
storage units can bridge the gap between economically optimal
locations during normal operations and areas needing backup
during disasters. Ref. [4] proposed an optimization model
to invest in and relocate these units dynamically, forming
microgrids, and mitigating potential load shedding during
disasters using a progressive hedging algorithm due to the
complexity of the model. Ref. [5] assessed the impact of the
penetration level of DERs in an energy community on grid
resilience and offers strategies to manage DER penetration
like DGs, WTs, ESSs, and EVPs to enhance resilience while
meeting economic objectives. The paper has ignored the
impact of the effective load-carrying capability (ELCC) of
DERs on grid resilience. The assessment of the power system
vulnerabilities to various natural disasters using resilience
metrics, employing a mesh-structured view at the transmission
level to model the impact of different disasters is presented
in [6]. Although the paper modelled the DERs in the system,
the ELCC of DERs has been ignored.

A proactive operation scheme for improving distribution
system resiliency against natural hazards is proposed in [7].
The paper used a deep neural network engine to identify
the vulnerable branches and predict their failure during
the windstorm. An optimal resilient operation of the smart
distribution systems considering DERs is investigated in [8]
using a hybrid stochastic approach to handle the uncertainties.
Ref. [9] proposed a stochastic multi-period mixed-integer
linear programming model to determine where to underground
new distribution lines and how to arrange mobile generators
to serve critical loads during extreme events.

Traditional electricity networks rely on conventional assets
like transformers but fail to quantify the contribution of ESS
in ensuring network security and resilience. [10] introduced
a new methodology, using Monte Carlo simulations, to
assess the ELCC of an energy storage plant, revealing
factors influencing its security contribution such as outage



frequency, demand shape, and islanding capability. This
approach highlights the need for advanced network standards
to fairly integrate ESS solutions, enabling fair competition
between network and non-network assets for ensuring security
in electricity distribution. However, the paper has ignored
the resilience metrics and the impact of integrating the
ELCC and resilience assessment. Pennsylvania-New Jersey-
Maryland (PJM) interconnection is addressing this challenge
by enhancing resilience across various aspects like operations,
infrastructure, and security. [11] outlines PJM’s strategy to
assess and manage the impact of high renewable penetration
on grid resilience, emphasizing preparation and market-driven
approaches for improvement. Although the paper indicated the
importance of DER-based ELCC, in the formulations it has
ignored the integration of ELCC into the general presented
approach.

Based on the aforementioned literature review and the
authors’ comprehensive understanding, it is evident that DER-
based ELCC holds the potential to enhance the resilience of
active distribution systems against HILP events. This critical
aspect, however, has not been adequately addressed in existing
resilience assessment and enhancement methodologies. To
address this gap, this paper proposes a stochastic two-stage
scheduling approach to reinforce ADN resilience, particularly
in systems with high DER penetration. In the proposed
method, first, a mesh-view structure is employed to establish
interconnections between system components and HILP event
locations, which is crucial for assessing post-event damages.
In the next step, the ELCC of DERs is quantified and
incorporated into our formulations to understand its effect on
system resilience. A distinctive feature of our methodology
is its carbon-aware approach, which includes constraints on
carbon emissions during the generation scheduling process.
The framework is validated via a modified IEEE-33 bus
standard test case, with results confirming the positive impact
of DER-based ELCC on grid resilience. In summary, the main
contributions of this paper are as follows:

• Integration of ELCC of DERs into the ADN resilience
enhancement method;

• Developing pollution constraints to limit the amount
of carbon emissions during the resilience enhancement
process;

• Characterizing uncertainties in renewable generation,
market prices, and event characteristics (including
location, type, and severity level) to make the results more
realistic.

This paper is structured as follows: Section II provides a
brief overview of the microgrid’s cost-effective scheduling
technique and the adaptations made to include a detailed
ELCC integration. The analysis of simulation case studies
conducted on an IEEE 33-bus test system is presented in
Section III. Section IV summarizes the findings of this study.

II. METHODOLOGY

In this section, first, the general two-stage scheduling
method is discussed in Section II-A. Then, in Section II-B,

the resilience objective function is formulated to be
integrated into the conventional cost objective function.
Sections II-C and II-D formulate the ELCC and carbon
emission constraints, which will be integrated into the general
two-stage scheduling method through the system constraints.

A. The modified ELCC-emission-oriented stochastic two-stage
scheduling method

This paper utilizes a stochastic two-stage scheduling
method, modifying the objective function to accommodate
economic-resilient metrics. For an extensive mathematical
formulation of the proposed approach, please refer to [5], [12].
In this paper, the ELCC and carbon emission are quantified
and integrated into the proposed two-stage scheduling method.
The proposed cost function consists of economic (f1) and
resilience metrics (f2). Then the constraints are modified in
this paper by adding ELCC and carbon emission terms under
the impact of a HILP event. The economic objective function
consists of costs of day-ahead (or H&N) and real-time (or
W&S) variables (see [5]) as follows:

f1 = CH&N + CW&S . (1)

In the following section, the resilience metrics are
mathematically formulated to calculate the resilience objective
function.

B. Quantifying resilience metric

This study examines four metrics to assess the resilience
of ADNs: the ADN withstand ability quantified through the
restoration index (RI) and fragility index (FI), and technical
metrics including voltage deviation index (VDI), and lost
energy index (LEI). FI and RI gauge the system’s capacity
to endure and restore after an event, utilizing the ADN
performance curve. VDI and LEI assess ADN quality during
the event via optimal power flow computations [5]. Fig. 1
exhibits the Performance Curve (PC) of an ADN during
a HILP event [3], which is based on the supplied load
percentage.

Based on Fig. 1, the FI is calculated as follows:

FI ≈
NΓ∑
ω=1

νω

[
(PCp,ω − PCpe,ω) (tpe,ω − td,ω)

2PCp,ω(tpe,ω − td,ω)

]
, (2)

where Γ is the set of scenarios, NΓ is the number of scenarios,
νω is the probability of each scenario assuming ω ∈ Γ. Using
the PC diagram shown in Fig.1 and similar to (2), the RI
index is approximated by (3).

RI ≈
NΓ∑
ω=1

νω

[
(PCp,ω − PCpr,ω)(tirs,ω − trs,ω)

(PCp,ω − PCpe,ω)(tire,ω − trs,ω)

+
(PCpr,ω − PCpe,ω)(tre,ω − trs,ω)

2(PCp,ω − PCpe,ω)(tire,ω − trs,ω)

+
(PCp,ω − PCpr,ω)(tire,ω − tirs,ω)

2(PCp,ω − PCpe,ω)(tire,ω − trs,ω)

]
,

(3)

The VDI and LEI metrics indicate the performance of the
ADN operation during emergencies following a HILP event,



calculated using optimal power flow (OPF). The VDI metric
is computed as follows:

V DI =

Nbus∑
n=1

{
NΓ∑
ω=1

νω

[
NT∑
t=1

(|V ⋆
nω| − |Vntω|)

]}
, (4)

where V ⋆
n is the scheduled voltage of bus n, Vntω is the real-

time voltage of bus n at time t and scenario ω, and NT is
the total number of time periods. Similarly, the LEI index is
determined based on the lost load as follows:

LEI =

Nbus∑
n=1

{
NΓ∑
ω=1

νω

[
NT∑
t=1

(
P shed
ntω ∆t

plntωT

)]}
, (5)

where ∆t is the time interval duration (in this paper ∆t = 1
hour) and plntω is the real-time load at bus n, time t, and
scenario ω. It should be noted that all individual resilience
metrics are unitless and for a more resilient system, they
should be near zero, therefore, a sum function is used in
this paper to map the resilience metrics into the overall ADN
resilience score as follows:

f2 = ℜ = FI +REI + V DI + LEI. (6)
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Fig. 1. The ADN performance curve associated with a natural HILP event.

Based on the area depicted for the FI index in Fig. 1, it can
be approximately calculated using (2) (please see [5] for more
details). It is important to highlight that the system operator
possesses the flexibility to allocate distinct weight factors
to individual resilience metrics according to their planning
priorities. Through the adjustment of these weight factors, the
operator can assign varying levels of significance to particular
resilience metrics, allowing for customization of the overall
resilience index to correspond with the specific goals and
requirements of the ADN.

C. Quantifying the ELCC of DERs

The escalating integration of renewable and dispatchable
DERs in contemporary ADNs has elevated the significance of
DER-based ELCC for ADN operators and operators. DERs’
capacity credit holds the potential to swiftly restore ADNs
post extreme events and ensure their resilient operation. DER-
based ELCC evaluates the capacity value of DER sources,
quantifying additional load supply without compromising
reliability [13]. This metric relies on reliability measurements
like loss of load probability (LOLP) and loss of load
expectation (LOLE). The method used for calculating ELCC
based on LOLE is depicted in Fig. 2.

Active distribution network load
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Fig. 2. The reliability after reducing DER units (or increasing load).
As mentioned above, the LOLE is used to calculate the

ELCC of the DERs. The LOLE is a well-known reliability
index, which is calculated based on the LOLP in both the
H&N and W&S stages. In this paper, the LOLP index with
some minor modifications (see [5]) is calculated in both stages
(i.e., H&N and W&S) using (7) and (8), namely LOLPH&N

and lolpW&S , respectively.

LOLPH&N =
1

NT

NT∑
t=t0

ζt, (7)

lolpW&S =
1

NΓ

NΓ∑
ω=1

νωPe,ω
1

NT

NT∑
t=t0

ζtω, (8)

where ζtω is a binary variable and is 1 if at time t in the
scenario ω the lost load becomes greater than zero (otherwise
it is 0), and Pe,ω is the probability of event occurrence. The
LOLE index is defined in time periods (e.g. minutes, hours,
and days). In this paper, LOLE is defined as follows:

LOLEH&N = LOLPH&N × 24× 60 minutes/day. (9)

loleW&S = lolpW&S × 24× 60 minutes/day. (10)

According to Fig. 2, the ELCC is calculated by (11) and based
on the flowchart given in Algorithm 1.

ELCCDER
% =

(
L2 − L1

Load total

)
× 100. (11)

Finally, two new inequality constraints are added to the
general two-stage scheduling model, as presented in (12) and
(13) for the H&N and W&S stages, respectively. Let ELCC
and ELCC be the minimum and maximum limits of ELCC,
respectively.

ELCC ≤ ELCCH&N ≤ ELCC (12)

ELCC ≤ elccW&S ≤ ELCC (13)

D. Quantifying the carbon emission (CE) constraints

Governments shoulder the responsibility of combatting
global warming by reducing atmospheric carbon levels, a
pivotal approach in addressing climate change. Consequently,
the energy sector is pivoting towards net-zero carbon
frameworks. This study imposes limitations on carbon-injected
energy from sources like DGs and the main grid, aligning with
carbon emission considerations. These constraints influence
both the stages as follows:

CEH&N,up
t = PH&N,b

t CIupt , (14)



0 ≤ CEH&N,up
t ≤ CE

up

t , (15)

CEH&N,G
t =

Nbus∑
n=1

PG
ntCIGnt, (16)

0 ≤ CEH&N,G
t ≤ CE

G

t , (17)

where CEH&N,up
t is the carbon emission of the upstream

network, PH&N,b
t is purchased power from the upstream

network, CIupt is the main grid carbon intensity in g/kW ,
CEH&N,G

t is the carbon emission of DG units, PG
nt is the

generated power of DG at bus n at time t, and CIGnt is the
carbon intensity of DG units in location n at time t. Similarly
in the W&S stage, the CE constraints are as follows:

ceW&S,up
tω = pW&S,b

tω CIupt . (18)

0 ≤ ceW&S,up
tω ≤ CE

up

t . (19)

ceW&S,G
tω =

NΓ∑
ω=1

νω

Nbus∑
n=1

pGntωCIGnt. (20)

0 ≤ ceW&S,G
tω ≤ CE

G

t . (21)

Notably, in (14)–(21), the uppercase and lowercase variables
are H&N and W&S stage constraints, respectively.

Algorithm 1 ELCC Calculation Algorithm

input data.
u = 1.
Run ADN Optimal power flow (OPF).
Calculate the LOLEu index.
Fix the imported power from the main grid equal to the
scheduled value from OPF.
repeat:

u = u+1.
Gradually increase the ADN load by 1%.
Run ADN OPF.
Calculate the LOLEu using (9) and (10).
if LOLE remained fixed break the loop.

Calculate the ELCC based on the additional load using (11).

III. SIMULATION RESULTS AND DISCUSSIONS

A. Test system

The test system used in this paper consists of 33 buses,
33 lines, 5 DGs, 4 ESSs, 4 EVPs, and 4 WTs. The technical
data of the system and its components can be found in [3].
The allocation of the DG units is as shown in Fig. 3 [3]. The
mesh-view structure [5] is used to calculate the correlation
of the system components and event location to assess the
system damages following a HILP event. In this paper, it is
assumed that the DG carbon emission is fixed at 190 g/kWh
throughout the 24 hours of the day and the grid carbon
intensity data is collected from the official carbon intensity
API for Great Britain developed by National Grid (available
at https://carbonintensity.org.uk/)

TABLE I
COMPARISON OF ECONOMIC-RESILIENCE-EMISSION INDICES IN

DIFFERENT CASE STUDIES.
Case I Case II Case III

Economic index 16317.0045 16369.6196 17582.3011
Resilience index 1.4159 1.2123 1.0679

Carbon emission index [tons] 1.0115 0.8950 0.7866
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Fig. 3. The standard IEEE-33 bus test system [3].
B. Results

To evaluate the effects of incorporating ELCC constraints
into the ADN’s two-stage multi-objective method, three
case studies have been conducted. Case I excludes ELCC
constraints, while Case II applies them with limits of 25%
in normal operations and 10% post-HILP events. Case
III sets ELCC constraints at 30% for normal operations
and 1% for emergencies after HILP events. Essentially,
in Cases II and III, DERs have increased flexibility
compared to Case I for contributing surplus power during
emergencies to boost resilience. With uncertain parameters like
market price, event severity and location, and wind turbine
generation, 100 scenarios were initially generated based on
a uniform probability distribution function, later reduced to
10 for computational efficiency. ELCC impacts on economic,
resilience, and emission indices are detailed in Table I.

Table I shows that higher ELCC limits in the ADN lead
to increased operating costs but lower resilience and emission
indices. This is because the ADN, in normal operations, relies
less on DGs and WTs, conserving ELCC for emergencies.
This results in purchasing more power from the main grid,
thus elevating costs. Reduced power generation from DGs
consequently lowers carbon emissions. However, utilizing the
ELCC capacity of DGs and WTs during emergencies, as
indicated in Table I, improves ADN resilience.

The total carbon emission of the ADN (DGs and main
grid) is shown in Fig.4. It should be noted that the HILP
event is supposed to start between hours 5:00 PM to 7:00
PM and end between 3:00 AM to 5:00 AM. According to
this figure, the emissions in normal operation in Case III are
less compared to Cases I and II. As mentioned before, DGs
will reduce their generation in this case to be able to share
their power in emergencies. During emergencies (i.e., between
hours 5:00 PM to 5:00 AM), the carbon emissions of all cases
are approximately the same because in this situation the ADN



is discounted from the main grid. Therefore, the grid emission
becomes zero and the emission is related to the DGs, which are
the same for all cases. Furthermore, to investigate the impact
of ELCC on the economic aspect of ADN (i.e., revenue/lost
load cost), Scenario 4 has been selected and the revenue and
lost load cost of the ADN are shown in Fig. 5 in this scenario.
It can be seen from Fig. 5(a) that considering ELCC has

0

0.005

0.01

0.015

0.02

0.025

15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
a
rb

o
n

 e
m

is
si

o
n

 [
T

o
n

s]

Hours

Case I Case II Case III

Fig. 4. The carbon emission of the ADN in different case studies.
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Fig. 5. The economic analysis (revenue/cost) of ADN in different case
studies.
decreased the revenue of the ADN. In contrast, Fig. 5(b),
shows that the lost load cost of the ADN after a HILP event has
been dramatically decreased in Case III compared to Cases I
and II. It can be concluded that the reduction in ADN revenue
in Case III is spent to reduce the lost load.

IV. CONCLUSIONS

The primary objective of this paper is to explore how the
effective load-carrying capability (ELCC) of distributed energy
resources (DERs) affects the resilience of a decarbonized
active distribution network (ADN), particularly under system
uncertainties. To achieve this, a stochastic two-stage multi-
objective scheduling approach is employed in this paper. The
approach uses a mesh-view structure to analyze the correlation
between event locations and ADN components, crucial for

assessing system damage post high-impact low-probability
(HILP) events. This carbon-aware approach integrated the
ELCC of DERs to evaluate its impacts on economic, resilience,
and emission indices within the system. Simulations on an
IEEE-33 bus test system encompass three case studies, each
varying in ELCC constraint limitations. The results have
demonstrated that while incorporating the ELCC of DERs
leads to an increase in operational costs for the ADN,
it significantly lowers both resilience and carbon emission
metrics. Moreover, although the ELCC inclusion reduces ADN
revenue, it substantially cuts lost load costs during emergencies
in HILP events, thereby enhancing ADN’s overall resilience.
Acknowledging the computational challenges inherent in
reliability assessments at both ISO and distribution levels, in
our future work, the fast-computing tools will be considered
to deal with the scalability issues.
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