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A B S T R A C T

The integration of distributed energy resources (DERs) into contemporary energy communities (ECs) has
revolutionized power systems, fostering sustainable and clean energy infrastructures. This paper focuses
on the effective load-carrying capability (ELCC) to enhance grid resilience in the presence of DERs. We
introduce an innovative network topology-based optimization framework that seamlessly integrates economic
and resilience metrics within ECs while reducing carbon emissions. The Pareto front of non-dominated solutions
for the proposed three-objective optimization problems is extracted, providing a comprehensive visualization
of the trade-off between economic, resilience, and emission objectives, enabling informed decision-making.
Analytical results, validated on the IEEE 33-bus test system, demonstrate the effectiveness of DER-based
ELCC quantification in managing load supply during emergencies. Case studies show how the synergy
between economic and resilience-based metrics significantly enhances grid resilience. The proposed framework
has diverse applications, including enhancing grid adaptability to climate change, promoting sustainable
energy integration, optimizing demand response strategies, and supporting the transition to a decarbonized
energy community. This work addresses the challenges and opportunities in the evolving energy landscape,
emphasizing the importance of our approach in achieving a cleaner and more resilient energy future.
1. Introduction

The evolution of the power system increased sustainability, reliabil-
ity, and resilience is driven by the development of contemporary ECs
with higher levels of clean and renewable DERs. Planning urban areas
for positive energy transformation, focusing on decarbonization and
renewable energy deployment, requires a long-term perspective, active
engagement of various societal elements, and an inclusive approach to
prevent inequality while promoting the development of positive energy
communities (Lazaroiu and Putrus, 2023). In fact, ECs enable both
DERs and customers to actively participate in energy management,
leading to social, environmental, and economic benefits while fostering
innovative management strategies within the power system (Nagpal
et al., 2022). Besides providing innovative energy management solu-
tions to distribution system operators (DSOs), ECs also hold significant
potential for enhancing power system capabilities in addressing high-
impact low-probability (HILP) events (Younesi et al., 2022a). In other
words, by appropriately allocating DERs close to load centers, the
dependency on power transfer through power lines (which are the
most vulnerable components facing HILP events) is reduced, ultimately
improving grid resilience (Younesi et al., 2020).
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Over time, the HILP events have increased in frequency due to cli-
mate change. Although addressing environmental factors in long-term
planning can help reduce the occurrence of HILP events, it remains
crucial for power systems to be adequately prepared in the short
term (Younesi et al., 2023). This preparation involves hardware up-
grades and operational planning strategies to effectively manage such
events. As a result, numerous advancements have been made to assess
and enhance grid resilience against HILP events, emphasizing the im-
portance of both short-term and long-term planning in the face of a
changing climate (Mahzarnia et al., 2020; Younesi et al., 2022a; Wang
et al., 2015).

In practice, dividing the distribution system into multiple local ECs
offers significant potential to satisfy both DSO and end-user customers
in the short term from both economic and resilience perspectives.
As such, this transition is of paramount importance and cannot be
overlooked, necessitating the thorough assessment and enhancement of
resilience within these ECs. In addition, the aggregation and optimal
dispatch of DERs play a critical role in ECs, contributing to enhanced
resilience while optimizing operational costs. A hierarchical control
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Nomenclature

Acronyms

𝐻&𝑁 Here-and-now
𝑊&𝑆 Wait-and-see
CE Carbon emission
DA Day-ahead
DER Distributed energy resource
DG Distributed generation
DSO Distribution system operator
EC Energy community
ELCC Effective load-carrying capability
ESS Energy storage system
EV Electric vehicle
EVP Electric vehicle parking
FI Fragility index
HILP High-impact low-probability
LEI Lost energy index
LOLE Loss of load expectation
LOLP Loss of load probability
MISO Midcontinent independent system operator
REI Restoration efficiency index
RT Real-time
SOC State-of-charge
TSERS Two-stage economic-resilience scheduling
VDI Voltage deviation index

Indices & Symbols

𝜔 Index of scenario
𝑛, 𝑟 Index of bus
𝑿H&N H&N vector of the decision variables
𝒙W&S W&S vector of the decision variables
𝑖 Index of breakpoints in piecewise linear

approximation
𝑡 Index of hours

Parameters

𝜅𝑛 Auxiliary parameter
𝜆𝐷𝐺 Start-up cost of DG
𝜆𝐺𝑛𝑡 DG operational cost
𝜆𝐿𝑛𝑡 H&N customers-side energy price
𝜆𝑅,𝑑𝑒𝑝𝑛𝑡 Price of deploying demand-side reserve
𝜆𝑠ℎ𝑛𝑡 Load shedding cost
𝜆𝑢(𝑑)𝑛𝑡 The price of up (down) reserves
𝜈𝜔 Probability of scenario
𝜌𝑏(𝑠) H&N Energy price for the buyer (seller)
𝜌𝑤&𝑠,𝑏+(−)𝑡𝜔 w&S correction of the price for buyers
𝜌𝑤&𝑠,𝐸𝑡𝜔 Price of energy storage device power
𝜌𝑤&𝑠,𝐺𝑡𝜔 Price of DG spinning reserve
𝜌𝑤&𝑠,𝑠+(−)𝑡𝜔 w&S correction of the price for sellers
𝜌𝑤&𝑠,𝑊𝑡𝜔 Price of buying wind energy
𝑎(𝑏) H&N (W&S) Status of EVP
𝐺(𝐵) The admittance real (imaginary) parts
𝑁𝛤 Number of Scenarios

strategy was proposed in Utkarsh et al. (2021), wherein the flexibility
and dispatch of DERs were optimized using convex optimization mod-
els. Social welfare, defined as end-user satisfaction with grid service,
2

𝑁𝑏𝑢𝑠 Total system buses
𝑃𝐶(𝑡) Energy community performance curve
𝑃𝐶𝑝 Pre-event performance curve
𝑃𝐶𝑝𝑟 Post-restoration performance curve
𝑄𝐶𝑛 Compensator capacity
𝑡𝑒𝑠 Event start time
𝑡𝑖𝑟𝑒 Infrastructure restoration end time
𝑡𝑟𝑠 Restoration start time
𝑧 Islanding mode indicator of MG
𝑍𝑃 (𝑄), 𝐼𝑃 (𝑄), 𝑃 𝑃 (𝑄) The coefficients of the ZIP model of the load
𝐶𝐼𝑢𝑝𝑡 The H$N generated carbon at the upstream

network for importing each kWh
ℎ1(2) Piecewise linear approximation coefficients
𝑀1,𝑀2 Positive large number
𝑁𝑡 Scheduling time horizon (Hours)
𝑃𝑒,𝜔 Probability of occurring event 𝑒 in scenario

𝜔
𝑃𝐶𝑝𝑒 Post-event performance curve
𝑡𝑑 Degradation start time
𝑡𝑒𝑑 Event end time
𝑡𝑖𝑟𝑠 Infrastructure restoration start time
𝑡𝑟𝑒 Restoration end time
𝑉 ∗
𝑛 The scheduled voltage of bus 𝑛

Variables

𝛥𝑝𝑏+(−)𝑡𝜔 w&S correction of the power of buyers
𝛥𝑝𝑠+(−)𝑡𝜔 w&S correction of the power of sellers
𝛾𝑐 Compensator step
𝜓𝑠𝑡𝑔(𝐸𝑉 ) H&N state of energy storage (electric vehicle)

systems
𝜃𝑛 Voltage angle
𝑐𝑠𝑛𝑡𝑤 DG starting cost
𝐶𝐸𝐻&𝑁,𝑢𝑝

𝑡 Total H&N generated carbon emission related
to the upstream network

𝐶𝐼𝐺𝑛𝑡 The H$N generated carbon for injecting each
kWh from DGs

𝑓𝑙𝑃 (𝑄) Active (Reactive) power flow
𝑃 𝑏(𝑠) H&N scheduled power for buyer (seller)
𝑝𝐵,𝐸𝑛𝑡𝜔 w&S power of energy storage devices
𝑝𝐵,𝐺𝑛𝑡𝜔 w&S purchased DG spinning reserve
𝑝𝐵,𝑊𝑛𝑡𝜔 w&S power of wind energy
𝑝𝐺𝑛𝑡𝜔 w&S power of DG
𝑝𝑆ℎ𝑒𝑑𝑛𝑡𝜔 , 𝑞𝑆ℎ𝑒𝑑𝑛𝑡𝜔 Active and reactive load curtailments
𝑝𝑠ℎ𝑛𝑡𝜔 w&S shedding load
𝑃𝐸+(−)𝑛𝑡 H&N charge(discharge) power of energy stor-

age system
𝑃𝐸𝑉 +(−)
𝑛𝑡 H&N charge(discharge) power of electric vehi-

cle
𝑃𝐺𝑛𝑡 H&N power of DG
𝑃𝐿𝑛𝑡 H&N active load
𝑃𝐿𝑛𝑡 H&N load power
𝑃𝑊𝑛𝑡 H&N wind power

can be achieved as an optimization goal for DSO planning, ensuring
that the needs of all stakeholders are met. In Putratama et al. (2022)
the authors developed a three-level method that integrated day-ahead,
real-time, and half-hourly basis horizons. The primary goal of this study
was to reduce operational costs for households by implementing local

ECs. From both economic and resilience perspectives, energy storage
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𝑃𝐻&𝑁,𝑏(𝑠)
𝑡 H&N purchased (sold) power from (to) the

main grid
𝑃𝐻&𝑁
𝑡 H&N power exchange with main grid
𝑟𝐿𝑈 (𝐷)
𝑛𝑡𝜔 w&S deployed demand-side reserve
𝑅𝑢(𝑑)𝑛𝑡 Up (down) reserves
𝑆𝑂𝐶𝐸(𝐸𝑉 ) H&N state of the charge of energy storage

(electric vehicle) systems
𝑉𝑛 Voltage magnitude
𝜉, 𝑥, 𝑦,≇ Binary variables
𝐶 The operational cost
𝐶H&N H&N operational cost
𝑐W&S W&S operational cost
𝑐𝑑𝑡 Cost of buying energy from DERs and

demand side reserves
𝑐𝑢𝑡 Cost of power exchange with the upstream

network
𝐶𝐸𝐻&𝑁,𝐺

𝑡 Total H&N generated carbon emission related
to the DGs

𝑓1 The economic objective function

systems offer significant benefits to the distribution system, encom-
passing all renewable/dispatchable DERs, prosumers, and consumers.
In Vespermann et al. (2020), it was demonstrated that all market
players benefit from storage devices, even without direct ownership.
Moreover, the placement and sizing of DERs, along with network
reconfiguration, were proposed in Rahiminejad et al. (2023) to enhance
resilience against cyber-attacks.

Energy communities involve consumers with DERs. These communi-
ties experiment with new energy practices, such as local flexibility mar-
kets and cooperative microgrids, to achieve energy resilience. Tomin
et al. (2022) presented a modeling framework using bilevel program-
ming and reinforcement learning for optimizing community microgrid
management, resulting in cost reduction and improved electricity sup-
ply quality for settlements and resilience. In addition to bolstering grid
resilience through the inclusion of DERs and storage facilities, ECs also
benefit from flexible loads. These loads enable DSOs to prioritize the
continuous operation of critical loads during emergency events. A new
bi-level method was proposed in Chamana et al. (2022) to manage
controllable devices in a small microgrid, ensuring that loads were sup-
plied in priority order. A post-disaster recovery method using portable
energy resources, electric vehicles, and energy storage devices was later
proposed in Papari et al. (2021), employing network reconfiguration
to improve the microgrid community resilience. Inherent uncertainties
of demand response for flexible loads and renewable resources in
microgrid communities have raised concerns for planners regarding
short-term and long-term resilience against disasters. To tackle this
issue, Guo et al. (2019) proposed a short-term stochastic, resilience-
oriented network reconfiguration method that took into account the
impact of demand response, with disaster costs as the primary objective
function. Furthermore, a long-term risk-based planning mechanism for
active distribution systems was further developed to improve resilience
in Poudyal et al. (2022). While grid resilience has been the focus
of the aforementioned studies, the resilience metrics have not been
directly incorporated into the objective functions of the optimization
process. This omission has led to concerns that resilience-based optimal
solutions may not be backed by a strong theoretical foundation. To
address this, it is necessary to seamlessly integrate resilience metrics
within the optimization process, thereby establishing a more robust
approach to achieving optimal solutions that effectively improve grid
resilience.

From the literature review above, it is evident that the effective
load-carrying capability (ELCC) (Midcontinent-ISO, 2015), which quan-
3

tifies the capacity contribution for generation outputs such as wind and
solar, has not been explored in the context of resilience assessment for
the distribution system. The ELCC of renewable sources refers to the
measure of incremental load that they can consistently support over
a prolonged period. This concept has been widely recognized and im-
plemented by the Midcontinent Independent System Operator (MISO),
which has employed the ELCC credit values of wind and solar in their
resource adequacy process for numerous years (Heath and Figueroa-
Acevedo, 2018). In fact, ECs with higher ELCC credit, particularly those
with DER-based ELCC, possess greater capabilities in restoring critical
loads following a disaster. The concept of defining the capacity of
DGs to support additional demand without necessitating new units was
first introduced as a sustainability factor in the power system in Dent
et al. (2014). This attribute can be utilized in resilience enhancement
programs for distribution systems, enabling a rapid restoration process
after an incident. However, uncertainties arising from renewable en-
ergy sources introduce more significant challenges to the distribution
system, complicating the process of calculating the corresponding ELCC
values. To address this issue, an approximated dynamic programming
method was proposed in Chen et al. (2014) for calculating the ELCC
of renewable energy resources on an hourly basis. The significance
of shifting to renewable energy sources due to the substantial role of
fossil fuels in global greenhouse gas emissions is underlined in Osman
et al. (2023). The paper discusses the impact of climate change on
renewables, highlights the decreasing costs of solar and wind energy,
and emphasizes the potential for renewable energy to decarbonize the
electricity sector and mitigate climate change. To the best of the au-
thors’ knowledge, the creation of mathematical models that effectively
integrate and quantify the ELCC within the resilience enhancement
process remains an intricate and uncharted territory. This highlights
the need for continued research and development in this area to devise
innovative approaches that leverage the potential of ELCC, ultimately
leading to a more resilient and robust power system in the face of
uncertainties from renewable energy sources. In order to distinguish
the novelties of the current paper from previous papers, the literature
review is summarized in Table 1.

Drawing from the comprehensive literature review, it is evident
that while the advantages of Energy Communities (ECs) and Effective
Load-Carrying Capability (ELCC) credits for grid resilience are well-
recognized, a distinct challenge persists. This challenge revolves around
the development of robust mathematical formulations that seamlessly
integrate DER-based ELCC credits into the framework for enhancing
EC resilience. To bridge this crucial gap, this paper introduces a the-
oretical analysis of the incorporation of DER-based ELCC credits into
EC resilience enhancement, employing post-event network reconfigu-
ration strategies. To achieve this objective, a sophisticated two-stage
algorithm is presented, effectively integrating economic, resilience,
and carbon emission metrics within the integrated ECs. This approach
ensures the optimality of the objective function while maintaining
resilience under varying loading conditions. Moreover, we introduce an
innovative mesh-view grid mapping structure, devised by the authors,
to evaluate EC model behavior during extreme events, thereby assessing
resilience comprehensively. In addition to these advancements, carbon
emission-related constraints are integrated into the operational con-
straints of the system, promoting environmentally friendly practices.
The paper culminates with a series of simulation case studies conducted
on the IEEE 33-bus test system, which conclusively demonstrate the
effectiveness and efficiency of the proposed framework. Notably, one
of the primary contributions of this research lies in the extraction of
the Pareto front of non-dominated solutions for the proposed three-
objective optimization problem. This analytical process provides a
holistic visualization of the trade-off between economic, resilience, and
emission objectives, offering decision-makers the essential insights to
make well-informed decisions tailored to their specific requirements
and preferences. In summary, this paper addresses the critical gap in
integrating DER-based ELCC credits into EC resilience enhancement,

offering a refined mathematical framework and employing innovative
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Table 1
Comparison between the present article and previous literature.
Ref. No. Economic

index
Resilience
index

Emission
index

Tri-objective DER based
ELCC

Reconfiguration Uncertainties

Younesi et al. (2023) Yes Yes Yes No No No Yes
Utkarsh et al. (2021) Yes Yes No No No No No
Putratama et al. (2022) Yes No No No No No Yes
Vespermann et al. (2020) Yes No No No No No No
Rahiminejad et al. (2023) Yes Yes No No No Yes No
Tomin et al. (2022) Yes No Yes No No No Yes
Chamana et al. (2022) No Yes No No No No Yes
Papari et al. (2021) Yes Yes No No No Yes No
Guo et al. (2019) Yes Yes No No No No Yes
Poudyal et al. (2022) Yes Yes No No No No Yes
Younesi et al. (2022b) Yes Yes No No No No Yes

Current paper Yes Yes Yes Yes Yes Yes Yes
methodologies. The introduction of carbon emission constraints and the
extraction of the Pareto front further enrich the paper’s contributions.
Specifically, the main contributions of this paper can be summarized as
follows:

• Evaluate the impact of the DER-based ELCC credit on grid re-
silience under the implementation of the mesh-view grid mapping
structure;

• Extracting the Pareto front of non-dominated solutions for pro-
viding a comprehensive visualization of the economic-resilience-
emission trade-off for informed decision-making;

• Develop an innovative approach for improving the assessment of
resilience in large-scale energy communities, taking into account
network reconfiguration strategies following events;

• Incorporate carbon emission constraints into the stochastic sche-
duling framework that combines grid economics and resilience for
a decarbonized energy community;

• Accounting for uncertainties in renewable generation, market
prices, and event characteristics (including location, type, and
severity level) to make the results more realistic.

The structure of this paper is organized as follows. In Section 2, a
omprehensive and theoretical-based methodology is proposed, encom-
assing various components. Firstly, a generalized two-stage economic-
esilience scheduling (TSERS) framework is introduced in Section 2.1.
he ELCC quantification procedure is discussed in Section 2.2. Sec-
ion 2.3 presents the integration of ELCC with the TSERS framework.
dditionally, II-D delves into the event characteristics analysis us-

ng the innovative mesh-view grid mapping structure. Section 3 con-
ucts the simulation case studies on the IEEE 33-bus test system. Sec-
ion 4 concludes the paper by summarizing the findings and suggesting
otential avenues for future work.

. Methodology

In this section, a generalized economic-resilience-based two-obj-
ctive two-stage stochastic scheduling formulation for ECs is first pro-
ided. The DER-based ELCC method is then defined, qualified, and
ntegrated into the general TSERS framework.

.1. Generalized two-stage economic-resilience scheduling (TSERS)

.1.1. Economic objective function
The proposed generalized TSERS consists of two stages, which are

eferred to as either here-and-now (H&N) and wait-and-see (W&S) or
ay-ahead (DA) and real-time (RT ). For consistency, the first stage
s denoted as H&N , and the second stage as W&S in this paper.

Furthermore, uppercase and lowercase letters are utilized to represent
variables in H&N and W&S, respectively. Let 𝑿H&N and 𝒙W&S be the
4

corresponding vectors of decision variables representing each stage.
The cost under the economic objective function (i.e., 𝑓1) associated
with both H&N and W&S variables is presented as follows:

𝑓1 =
𝑁𝑡
∑

𝑡=𝑡0

𝐶𝑡
(

𝑿𝐻&𝑁 ,𝒙𝑊&𝑆
)

=
𝑁𝑡
∑

𝑡=𝑡0

(𝐶𝐻&𝑁
𝑡 + 𝑐𝑊&𝑆

𝑡 ). (1)

𝐶𝐻&𝑁 is calculated hourly and encompasses the cost of exchange
with the upstream network, the cost of demand-side reserves, and the
income generated from selling energy to customers. The expression for
𝐶𝐻&𝑁 is given in (2) (Younesi et al., 2021b).

𝐶𝐻&𝑁
𝑡 = 𝜌𝑏𝑡 𝑃

𝑏
𝑡 − 𝜌𝑠𝑡 𝑃

𝑠
𝑡 +

𝑁𝑏𝑢𝑠
∑

𝑛=1
(𝜆𝑢𝑛𝑡 𝑅

𝑢
𝑛𝑡 + 𝜆

𝑑
𝑛𝑡 𝑅

𝑑
𝑛𝑡 − 𝜆

𝐿
𝑛𝑡 𝑃

𝐿
𝑛𝑡 ). (2)

Similarly, 𝑐𝑊&𝑆 is calculated hourly in each scenario using (3). It
encompasses the cost of power exchange with the upstream network
(𝑐𝑢), the cost of purchasing energy from independent DERs, the oper-
ational cost of supplying energy from dependent DERs, and the costs
associated with demand-side reserves (𝑐𝑑) (Younesi et al., 2021b).

𝑐𝑊&𝑆
𝑡 = 𝑐𝑢𝑡 + 𝑐

𝑑
𝑡 , (3)

where the term 𝑐𝑢𝑡 represents the cost of adjustments in the day-ahead
scheduled import/export power based on the real-time market prices,
and it is expressed by (4).

𝑐𝑢𝑡 =
𝑁𝛤
∑

𝜔=1
𝜈𝜔

[

(𝜌𝑤&𝑠,𝑏+𝑡𝜔 𝛥𝑝𝑏+𝑡𝜔 )

−(𝜌𝑤&𝑠,𝑏−𝑡𝜔 𝛥𝑝𝑏−𝑡𝜔 ) − (𝜌𝑤&𝑠,𝑠+𝑡𝜔 𝛥𝑝𝑠+𝑡𝜔 ) + (𝜌𝑤&𝑠,𝑠−𝑡𝜔 𝛥𝑝𝑠−𝑡𝜔 )
]

. (4)

𝑐𝑑𝑡 represents the cost of purchasing energy from DERs and demand-
side reserves, as given by (5).

𝑐𝑑𝑡 =
𝑁𝛤
∑

𝜔=1

𝑁𝑏𝑢𝑠
∑

𝑛=1
𝜈𝜔

[

(𝑐𝑠𝑛𝑡𝑤 + 𝜆𝐺𝑛𝑡 𝑝
𝐺
𝑛𝑡𝜔) + (𝜌𝑤&𝑠,𝑊𝑡𝜔 𝑝𝐵,𝑊𝑛𝑡𝜔 )

+(𝜌𝑤&𝑠,𝐺𝑡𝜔 𝑝𝐵,𝐺𝑛𝑡𝜔 + 𝜆𝑤&𝑠,𝑅𝐺𝑡𝜔 𝑟𝐵,𝐺𝑛𝑡𝜔 ) + (𝜌𝑤&𝑠,𝐸𝑡𝜔 𝑝𝐵,𝐸𝑛𝑡𝜔 )

+(𝜆𝑅,𝑑𝑒𝑝𝑛𝑡 (𝑟𝐿𝑈𝑛𝑡𝜔 − 𝑟𝐿𝐷𝑛𝑡𝜔)) + (𝜆𝑠ℎ𝑛𝑡 𝑝
𝑠ℎ
𝑛𝑡𝜔)

]

. (5)

The decision variables are subject to a set of constraints, which
are modeled as equality, inequality, and bound constraints. Some of
these constraints are related to the H&N and W&S stages, while others
connect the variables of both stages.

2.1.2. H&N constraints
The H&N constraints are represented in (6)–(27). The active power

balance of the EC is given by (6), in which the 𝑃𝐻&𝑁
𝑡 is determined

based on the amount of energy purchased from and sold to the main
grid, as specified in (7).

𝑃𝐻&𝑁
𝑡 =

𝑁𝑏𝑢𝑠
∑

𝑛=1

[

𝑃𝐺𝑛𝑡 + 𝑃
𝑊
𝑛𝑡 − (𝑃𝐸𝑉 +

𝑛𝑡 − 𝑃𝐸𝑉 −
𝑛𝑡 ) −(𝑃𝐸+𝑛𝑡 − 𝑃𝐸−𝑛𝑡 ) + 𝑃𝐿𝑛𝑡

]

. (6)

𝐻&𝑁 𝐻&𝑁,𝑏 𝐻&𝑁,𝑠
𝑃𝑡 = 𝑃𝑡 − 𝑃𝑡 . (7)
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The amount of power exchanged with the main grid (either pur-
chased or sold) is subject to limitations based on emissions and power
shortages on both sides (i.e. the main grid and the local EC). These
limitations are incorporated into the formulation through (8) and (9).

0 ≤ 𝑃𝐻&𝑁,𝑏
𝑡 ≤ 𝑃

𝐻&𝑁,𝑏
𝑡 𝜉𝐻&𝑁

𝑡 . (8)

≤ 𝑃𝐻&𝑁,𝑠
𝑡 ≤ 𝑃

𝐻&𝑁,𝑠
𝑡 (1 − 𝜉𝐻&𝑁

𝑡 ). (9)

The power of DGs, WTs, and loads, as well as the reserve amount
of system power, are constrained by physical limitations and techno-
economic characteristics, as demonstrated in (10)–(14).

𝑃𝐺𝑛 𝑥𝑛𝑡 ≤ 𝑃𝐺𝑛𝑡 ≤ 𝑃
𝐺
𝑛 𝑥𝑛𝑡. (10)

𝑊
𝑛 ≤ 𝑃𝑊𝑛𝑡 ≤ 𝑃

𝑊
𝑛 . (11)

𝑃𝐿𝑛 ≤ 𝑃𝐿𝑛𝑡 ≤ 𝑃
𝐿
𝑛 . (12)

0 ≤ 𝑅𝐿𝑈𝑛𝑡 ≤ 𝑅
𝐿𝑈
𝑛𝑡 . (13)

≤ 𝑅𝐿𝐷𝑛𝑡 ≤ 𝑅
𝐿𝐷
𝑛𝑡 . (14)

The operation of the energy storage system in the EC is mod-
eled through several equations, including the state-of-charge (SOC)
at each time step, as expressed in (15), the initial SOC in (16),
the maximum/minimum level of SOC in (17), and the amount of
charge/discharge at each time step, as described in (18) and (19).

𝑆𝑂𝐶𝐸𝑛𝑡 = 𝑆𝑂𝐶𝐸𝑛(𝑡−1) +
𝜂𝐸𝑛

𝐸
𝐸
𝑛

𝑃𝐸+𝑛(𝑡−1) −
1

𝜂𝐸𝑛 𝐸
𝐸
𝑛

𝑃𝐸−𝑛(𝑡−1). (15)

𝑆𝑂𝐶𝐸𝑛(𝑇0) = 𝑆𝑂𝐶0
𝑛 . (16)

𝑆𝑂𝐶𝐸𝑛 ≤ 𝑆𝑂𝐶𝐸𝑛𝑡 ≤ 𝑆𝑂𝐶
𝐸
𝑛 . (17)

≤ 𝑃𝐸+𝑛𝑡 ≤ 𝑃
𝐸+
𝑛𝑡 𝜓

𝐸
𝑛𝑡 . (18)

0 ≤ 𝑃𝐸−𝑛𝑡 ≤ 𝜂𝐸𝑛 𝑃
𝐸−
𝑛𝑡 (1 − 𝜓𝐸𝑛𝑡 ). (19)

Electric vehicles (EVs) can be modeled similar to energy storage
systems (ESSs). However, there are some minor differences in the be-
havior of charge/discharge of their batteries, due to certain limitations
aimed at preventing battery degradation, as discussed in Vagropoulos
and Bakirtzis (2013).

𝑆𝑂𝐶𝐸𝑉𝑛𝑡 = 𝑆𝑂𝐶𝐸𝑉𝑛(𝑡−1) +
𝜂𝐸𝑉𝑛

𝐸
𝐸𝑉
𝑛

𝑃𝐸𝑉 +
𝑛(𝑡−1) −

1

𝜂𝐸𝑉𝑛 𝐸
𝐸𝑉
𝑛

𝑃𝐸𝑉 −
𝑛(𝑡−1). (20)

𝑆𝑂𝐶𝐸𝑉𝑛𝑇𝑑𝑒𝑝 = 𝑆𝑂𝐶𝑑𝑒𝑝𝑛 . (21)

𝑂𝐶𝑎𝑟𝑟−𝐸𝑉𝑛 ≤ 𝑆𝑂𝐶𝐸𝑉𝑛𝑇𝑎𝑟𝑟 ≤ 𝑆𝑂𝐶
𝑎𝑟𝑟−𝐸𝑉
𝑛 . (22)

As mentioned earlier, to prevent battery degradation in EVs, their
charging mode transitions from constant current mode to constant
voltage mode. In other words, based on a threshold SOC, called satu-
ration SOC, their charging mode changes from constant current to con-
stant voltage. Consequently, the maximum amount of charge/discharge
power of EVs in constant current and constant voltage modes is pro-
vided by (23) (Vagropoulos and Bakirtzis, 2013).

⎧

⎪

⎨

⎪

⎩

𝑃
𝐸𝑉
𝑛𝑡 for 0 ≤ 𝑆𝑂𝐶𝐸𝑛𝑡 ≤ 𝑆𝑂𝐶𝑠𝑎𝑡−𝐸𝑉𝑛𝑡

𝑃
𝐸𝑉
𝑛𝑡

1−𝑆𝑂𝐶𝐸𝑉𝑛𝑡
1−𝑆𝑂𝐶𝑠𝑎𝑡−𝐸𝑉𝑛𝑡

for 𝑆𝑂𝐶𝑠𝑎𝑡−𝐸𝑉𝑛𝑡 < 𝑆𝑂𝐶𝐸𝑛𝑡 ≤ 1
(23)

As a result, the charge/discharge power of EVs in constant current
and constant voltage modes is specified by (24)–(25) and (26)–(27),
respectively.

0 ≤ 𝑃𝐸𝑉 + ≤ 𝑎 𝑃
𝐸𝑉 +

𝜓𝐸𝑉 . (24)
5

𝑛𝑡 𝑛𝑡 𝑛𝑡 𝑛𝑡 0
0 ≤ 𝑃𝐸𝑉 −
𝑛𝑡 ≤ 𝑎𝑛𝑡𝜂

𝐸𝑉
𝑛 𝑃

𝐸𝑉 −
𝑛𝑡 (1 − 𝜓𝐸𝑉𝑛𝑡 ). (25)

0 ≤ 𝑃𝐸𝑉 +
𝑛𝑡 ≤ 𝑎𝑛𝑡𝑃

𝐸𝑉 +
𝑛𝑡

(

1 − 𝑆𝑂𝐶𝐸𝑉𝑛𝑡
1 − 𝑆𝑂𝐶𝑠𝑎𝑡−𝐸𝑉𝑛𝑡

)

𝜓𝐸𝑉𝑛𝑡 . (26)

0 ≤ 𝑃𝐸𝑉 −
𝑛𝑡 ≤ 𝑎𝑛𝑡𝜂

𝐸𝑉
𝑛 𝑃

𝐸𝑉 −
𝑛𝑡

(

1 − 𝑆𝑂𝐶𝐸𝑉𝑛𝑡
1 − 𝑆𝑂𝐶𝑠𝑎𝑡−𝐸𝑉𝑛𝑡

)

(1 − 𝜓𝐸𝑉𝑛𝑡 ). (27)

As observed, all the aforementioned equations are linear except (26)
and (27). To improve computational efficiency, these equations are
linearized using approximation methods, as described in Gholami and
Aminifar (2015). Both (26) and (27), contain the nonlinear term
𝑆𝑂𝐶𝐸𝑉𝑛𝑡 𝜓𝐸𝑉𝑛𝑡 . According to Gholami and Aminifar (2015), this nonlinear
erm is replaced with a new variable (i.e. ℑ𝐸𝑉

𝑛𝑡 ≈ 𝑆𝑂𝐶𝐸𝑉𝑛𝑡 𝜓𝐸𝑉𝑛𝑡 ) and two
new inequality constraints related to the newly introduced variable are
added as follows:

−𝑀1𝜓
𝐸𝑉
𝑛𝑡 ≤ ℑ𝐸𝑉

𝑛𝑡 ≤𝑀1𝜓
𝐸𝑉
𝑛𝑡 (28)

−𝑀1(1 − 𝜓𝐸𝑉𝑛𝑡 ) ≤ ℑ𝐸𝑉
𝑛𝑡 − 𝑆𝑂𝐶𝐸𝑉𝑛𝑡 ≤𝑀1(1 − 𝜓𝐸𝑉𝑛𝑡 ) (29)

.1.3. W&S constraints
The W&S constraints encompass real-time operation equations for

ll EC components, including generation units, transmission lines,
oads, and DERs as well as physical limitations and AC power flow
quations. The active and reactive power balance equations for the EC
re represented by (30) and (31), respectively.

𝑏𝑢𝑠
∑

𝑟=1
𝑓𝑙𝑃(𝑛,𝑟)𝑡𝜔 − 𝜅𝑛𝑝𝑊&𝑆

𝑡𝜔 = 𝑝𝐺𝑛𝑡𝜔 + 𝑝𝑊𝑛𝑡𝜔 − 𝑝𝐿𝑛𝑡𝜔 + 𝑝𝑆ℎ𝑒𝑑𝑛𝑡𝜔

− (𝑝𝐸+𝑛𝑡𝜔 − 𝑝𝐸−𝑛𝑡𝜔) − (𝑝𝐸𝑉 +
𝑛𝑡𝜔 − 𝑝𝐸𝑉 −

𝑛𝑡𝜔 ), (30)

𝑁𝑏𝑢𝑠
∑

𝑟=1
𝑓𝑙𝑄(𝑛,𝑟)𝑡𝜔 = 𝑞𝐺𝑛𝑡𝜔 − 𝑞𝐿𝑛𝑡𝜔 + 𝑞𝑆ℎ𝑒𝑑𝑛𝑡𝜔 +𝑄𝐶𝑛 (𝛾

𝐶
𝑛,𝑡,𝑤∕𝛾

𝐶
𝑛 ), (31)

where

𝜅𝑛 =
{

1 for 𝑛 = 𝑃𝐶𝐶
0 for 𝑛 ≠ 𝑃𝐶𝐶

(32)

To ensure the minimization of lost load and enhance resilience, the AC
OPF is used in this paper (Cagnano et al., 2020). Therefore, according
to the AC OPF formulation, the active and reactive line flows at each
hour are calculated by (33) and (34), respectively.

𝑓𝑙𝑃(𝑛,𝑟)𝑡𝜔 = 𝐺(𝑛,𝑟)
(

𝑉 2
𝑛𝑡𝜔 − 𝑉𝑛𝑡𝜔𝑉𝑟𝑡𝜔𝑐𝑜𝑠(𝜃𝑛𝑡𝜔 − 𝜃𝑟𝑡𝜔)

)

−𝐵(𝑛,𝑟)
(

𝑉𝑛𝑡𝜔𝑉𝑟𝑡𝜔𝑠𝑖𝑛(𝜃𝑛𝑡𝜔 − 𝜃𝑟𝑡𝜔)
)

(33)

𝑓𝑙𝑄(𝑛,𝑟)𝑡𝜔 = −𝐵(𝑛,𝑟)
(

𝑉 2
𝑛𝑡𝜔 − 𝑉𝑛𝑡𝜔𝑉𝑟𝑡𝜔𝑐𝑜𝑠(𝜃𝑛𝑡𝜔 − 𝜃𝑟𝑡𝜔)

)

−𝐺(𝑛,𝑟)
(

𝑉𝑛𝑡𝜔𝑉𝑟𝑡𝜔𝑠𝑖𝑛(𝜃𝑛𝑡𝜔 − 𝜃𝑟𝑡𝜔)
)

(34)

The other EC operational constraints related to the AC OPF are
epresented by (35)–(44).

𝑛 ≤ 𝑉𝑛𝑡𝜔 ≤ 𝑉 𝑛 (35)

𝑃𝐺𝑛 𝑦𝑛𝑡𝜔 ≤ 𝑝𝐺𝑛𝑡𝜔 ≤ 𝑃
𝐺
𝑛 𝑦𝑛𝑡𝜔 (36)

𝑄𝐺
𝑛
𝑦𝑛𝑡𝜔 ≤ 𝑞𝐺𝑛𝑡𝜔 ≤ 𝑄

𝐺
𝑛 𝑦𝑛𝑡𝜔 (37)

The sum of the flows in each transmission line from both directions
is considered as the line loss, and it must be kept below a predefined
acceptable value (Trodden et al., 2013).

𝑓𝑙𝑃(𝑛,𝑟)𝑡𝜔 + 𝑓𝑙𝑃(𝑟,𝑛)𝑡𝜔 ≤ 𝑓𝑙
𝐿𝑜𝑠𝑠
(𝑛,𝑟) (38)

𝑠ℎ𝑒𝑑 𝐿
≤ 𝑝𝑛𝑡𝜔 ≤ 𝑝𝑛𝑡𝜔 (39)
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𝑞𝑠ℎ𝑒𝑑𝑛𝑡𝜔 = 𝑝𝑛𝑡𝜔(𝑄
𝐿
𝑛𝑡∕𝑃

𝐿
𝑛𝑡) (40)

𝑊&𝑆
𝑡𝜔 = 𝑝𝑊&𝑆,𝑏𝑢𝑦

𝑡𝜔 − 𝑝𝑊&𝑆,𝑠𝑒𝑙𝑙
𝑡𝜔 (41)

≤ 𝑝𝑊&𝑆,𝑏𝑢𝑦
𝑡𝜔 ≤ 𝑃

𝑊&𝑆,𝑏𝑢𝑦
𝑡 𝑧𝑡𝜔℘𝑡𝜔 (42)

0 ≤ 𝑝𝑊&𝑆,𝑠𝑒𝑙𝑙
𝑡𝜔 ≤ 𝑃

𝑊&𝑆,𝑠𝑒𝑙𝑙
𝑡 𝑧𝑡𝜔(1 −℘𝑡𝜔) (43)

0 ≤ 𝑐𝐷𝐺𝑛𝑡𝜔 = 𝜆𝐷𝐺𝑛𝑡 (𝑦𝑛𝑡𝜔 − 𝑦𝑛(𝑡−1)𝜔) (44)

In this paper, to accurately model the load, the ZIP model is em-
ployed, which characterizes loads based on the voltage of buses, as
discussed in Hajagos and Danai (1998). In fact, with the ZIP model,
the EC operator has a better option to control loads by managing the
voltage level of the bus, a technique known as conservation voltage
regulation (CVR), as described in Quijano and Padilha-Feltrin (2019).

𝑝𝐿𝑛𝑡𝑤 = 𝑃
𝐿
𝑛𝑡

(

𝑍𝑃
𝑛𝑡(
𝑉𝑛𝑡𝜔
𝑉 ◦
𝑛𝑡

)2 + 𝐼𝑃𝑛𝑡 (
𝑉𝑛𝑡𝜔
𝑉 ◦
𝑛𝑡

) + 𝑃 𝑃𝑛𝑡

)

(45)

𝑞𝐿𝑛𝑡𝑤 = 𝑄
𝐿
𝑛𝑡

(

𝑍𝑄
𝑛𝑡 (
𝑉𝑛𝑡𝜔
𝑉 ◦
𝑛𝑡

)2 + 𝐼𝑄𝑛𝑡 (
𝑉𝑛𝑡𝜔
𝑉 ◦
𝑛𝑡

) + 𝑃𝑄𝑛𝑡

)

(46)

The operational constraints of the ESSs and EVs in the W&S stage
esemble their model in the H&N stage, with the distinction that
owercase letters are used in the W&S stage, and the variables depend
n the simulation scenarios. Consequently, the operational constraints
f ESSs and EVs are represented by (47)–(58).

𝑜𝑐𝐸𝑛𝑡𝜔 = 𝑠𝑜𝑠𝐸𝑛(𝑡−1)𝜔 +
𝜂𝐸𝑛

𝐸
𝐸
𝑛

𝑝𝐸+𝑛(𝑡−1)𝜔 − 1

𝜂𝐸𝑛 𝐸
𝐸
𝑛

𝑝𝐸−𝑛(𝑡−1)𝜔. (47)

𝑠𝑜𝑐𝐸𝑛(𝑇0)𝜔 = 𝑆𝑂𝐶0
𝑛 . (48)

𝑆𝑂𝐶𝐸𝑛 ≤ 𝑠𝑜𝑐𝐸𝑛𝑡𝜔 ≤ 𝑆𝑂𝐶
𝐸
𝑛 . (49)

≤ 𝑝𝐸+𝑛𝑡𝜔 ≤ 𝑃
𝐸+
𝑛𝑡 𝑧𝑡𝜔𝛽

𝐸
𝑛𝑡𝜔. (50)

0 ≤ 𝑝𝐸−𝑛𝑡𝜔 ≤ 𝜂𝐸𝑛 𝑃
𝑠𝑡𝑔−
𝑛𝑡 (1 − 𝛽𝐸𝑛𝑡𝜔). (51)

𝑠𝑜𝑐𝐸𝑉𝑛𝑡𝜔 = 𝑠𝑜𝑐𝑒𝑣𝑛(𝑡−1)𝜔 +
𝜂𝐸𝑉𝑛

𝐸
𝐸𝑉
𝑛

𝑝𝐸𝑉 +
𝑛(𝑡−1)𝜔 − 1

𝜂𝐸𝑉𝑛 𝐸
𝐸𝑉
𝑛

𝑝𝐸𝑉 −
𝑛(𝑡−1)𝜔. (52)

𝑠𝑜𝑐𝐸𝑉𝑛𝑇𝑑𝑒𝑝𝜔 = 𝑆𝑂𝐶𝑑𝑒𝑝𝑛 . (53)

𝑆𝑂𝐶𝑎𝑟𝑟−𝐸𝑉𝑛 ≤ 𝑠𝑜𝑐𝐸𝑉𝑛𝑇𝑎𝑟𝑟𝜔 ≤ 𝑆𝑂𝐶
𝑎𝑟𝑟−𝐸𝑉
𝑛 . (54)

0 ≤ 𝑝𝐸𝑉 +
𝑛𝑡𝜔 ≤ 𝑏𝑛𝑡𝜔𝑃

𝐸𝑉 +
𝑛𝑡 𝑧(𝑡𝜔)𝛽𝐸𝑉𝑛𝑡𝜔 . (55)

≤ 𝑝𝐸𝑉 −
𝑛𝑡𝜔 ≤ 𝑏𝑛𝑡𝜔𝜂

𝐸𝑉
𝑛 𝑃

𝐸𝑉 −
𝑛𝑡 (1 − 𝛽𝐸𝑉𝑛𝑡 ). (56)

0 ≤ 𝑝𝐸𝑉 +
𝑛𝑡𝜔 ≤ 𝑏𝑛𝑡𝜔𝑃

𝐸𝑉 +
𝑛𝑡

(

1 − 𝑠𝑜𝑐𝐸𝑉𝑛𝑡𝜔
1 − 𝑆𝑂𝐶𝑠𝑎𝑡−𝐸𝑉𝑛𝑡

)

𝛽𝐸𝑉𝑛𝑡𝜔 . (57)

0 ≤ 𝑝𝐸𝑉 −
𝑛𝑡𝜔 ≤ 𝑏𝑛𝑡𝜔𝜂

𝐸𝑉
𝑛 𝑃

𝐸𝑉 −
𝑛𝑡

(

1 − 𝑠𝑜𝑐𝐸𝑉𝑛𝑡𝜔
1 − 𝑆𝑂𝐶𝑠𝑎𝑡−𝐸𝑉𝑛𝑡

)

(1 − 𝛽𝐸𝑉𝑛𝑡𝜔 ). (58)

As mentioned earlier, to reduce the computational burden of the
employed method, the non-linear equations i.e. (33)–(34), (45)–(46),
and (57)–(58) are linearized in this paper. According to Trodden et al.
(2013), Coffrin and Van Hentenryck (2014) in the piecewise approxi-
mation method, replacing term 𝑣𝑛𝑣𝑟𝑦𝑛𝑟 with 𝑣𝑛+𝑣𝑟+𝑦𝑛𝑡−2 is acceptable,
with a maximum absolute error of 0.0253. Similarly, 𝑣2𝑖 can be replaced
with 2𝑣 − 1, with a maximum absolute error of 0.0025. In addition,
6

𝑖

considering that 𝜃𝑛𝑟 = 𝜃𝑛 − 𝜃𝑟 is approximately equal to 𝑧𝑛𝑟 (see Trod-
den et al. (2013)), the line flow Eqs. (33)–(34) are substituted with
(59)–(60).

𝑓𝑙𝑃(𝑛,𝑟)𝑡𝜔 = 𝐺(𝑛,𝑟)
(

𝑉𝑛𝑡𝜔 + 𝑉𝑟𝑡𝜔 +𝛺(𝑛,𝑟)𝑡𝜔 − 2
)

+𝐵(𝑛,𝑟)(𝜃𝑛𝑡𝜔 − 𝜃𝑟𝑡𝜔),
(59)

𝑙𝑄(𝑛,𝑟)𝑡𝜔 = −𝐵(𝑛,𝑟)
(

𝑉𝑛𝑡𝜔 + 𝑉𝑟𝑡𝜔 +𝛺(𝑛,𝑟)𝑡𝜔 − 2
)

+𝐺(𝑛,𝑟)(𝜃𝑛𝑡𝜔 − 𝜃𝑟𝑡𝜔),
(60)

here 𝛺(𝑛,𝑟)𝑡𝜔 = ℎ1(𝑛,𝑟)𝑡𝜔,𝑖(𝜃𝑛𝑡𝜔−𝜃𝑟𝑡𝜔)+ℎ
2
(𝑛,𝑟)𝑡𝜔,𝑖 for all (𝜃𝑛𝑡𝜔−𝜃𝑟𝑡𝜔) ∈ [𝑥𝑛𝑟,𝑖,

𝑛𝑟,𝑖+1], 𝑖 = 0, 1,… , 𝐼 − 1. Note that, ℎ1 and ℎ2 are selected in such a
ay that 𝛺 and 𝑐𝑜𝑠(𝜃𝑛𝑡𝜔 − 𝜃𝑟𝑡𝜔) coincide at breakpoints 𝑥𝑖.

With the consideration that the voltage of EC buses is maintained
lose to 1, the load model can be approximated shown in (61) and (62).

𝐿
𝑛𝑡𝑤 = 𝑃

𝐿
𝑛𝑡

(

𝑍𝑃
𝑛𝑡(1 + 2(𝑣𝑛𝑡𝜔 − 𝑣◦𝑛𝑡)) + 𝐼

𝑃
𝑛𝑡 (
𝑣𝑛𝑡𝜔
𝑣◦𝑛𝑡

) + 𝑃 𝑃𝑛𝑡

)

. (61)

𝐿
𝑛𝑡𝑤 = 𝑄

𝐿
𝑛𝑡

(

𝑍𝑄
𝑛𝑡 (1 + 2(𝑣𝑛𝑡𝜔 − 𝑣◦𝑛𝑡)) + 𝐼

𝑄
𝑛𝑡 (
𝑣𝑛𝑡𝜔
𝑣◦𝑛𝑡

) + 𝑃𝑄𝑛𝑡

)

. (62)

imilar to (26) and (27), the last non-linear equations, i.e., (57) and
58), are linearized by introducing a new variable and adding two
nequality constraints.

.1.4. Coordinating constraints
In addition to H&N and W&S constraints, there are some other con-

traints that show the effect of theW&S constraints on H&N constraints.
his set of constraints is categorized as coordinating constraints. The
orrections in power exchange with the upstream network are modeled
hrough several equality and inequality constraints, which are shown
n (63)–(66).

𝑝𝑤&𝑆,𝐵𝑡𝜔 = 𝑝𝑊&𝑆,𝐵
𝑡𝜔 − 𝑃𝐻&𝑁,𝐵

𝑡 . (63)

𝑝𝑊&𝑆,𝑆
𝑡𝜔 = 𝑝𝑊&𝑆,𝑆

𝑡𝜔 − 𝑃𝐻&𝑁,𝑆
𝑡 . (64)

𝑝𝑊&𝑆,𝐵
𝑡𝜔 = 𝛥𝑝𝑊&𝑆,𝐵+

𝑡𝜔 − 𝛥𝑝𝑊&𝑆,𝐵−
𝑡𝜔 . (65)

𝑝𝑊&𝑆,𝑆
𝑡𝜔 = 𝛥𝑝𝑊&𝑆,𝑆+

𝑡𝜔 − 𝛥𝑝𝑊&𝑆,𝑆−
𝑡𝜔 . (66)

Finally, the demand-side deployed reserves are modeled by the follow-
ing equality and inequality equations.

𝑝𝐿𝑛𝑡𝜔 = 𝑃𝐿𝑛𝑡 − 𝑟
𝐿𝑈
𝑛𝑡𝜔 + 𝑟𝐿𝐷𝑛𝑡𝜔 . (67)

0 ≤ 𝑟𝐿𝑈𝑛𝑡𝜔 ≤ 𝑅𝐿𝑈𝑛𝑡 . (68)

0 ≤ 𝑟𝐿𝐷𝑛𝑡𝜔 ≤ 𝑅𝐿𝐷𝑛𝑡 . (69)

2.1.5. Carbon emission (CE) constraints
The responsibility of governments in addressing global warming

involves reducing the amount of carbon in the air, as this is one of the
most effective strategies against climate change. Therefore, the electri-
cal energy sector is transitioning towards net-zero carbon systems. In
this paper, the energy injected from carbon-based resources, such as
DGs and the main grid, is limited in accordance with carbon emission
considerations. These constraints are incorporated into both the H&N
and W&S stages. The H&N constraints related to carbon emissions are
provided in (70)–(73).

𝐶𝐸𝐻&𝑁,𝑢𝑝
𝑡 = 𝑃𝐻&𝑁,𝑏

𝑡 𝐶𝐼𝑢𝑝𝑡 . (70)

0 ≤ 𝐶𝐸𝐻&𝑁,𝑢𝑝
𝑡 ≤ 𝐶𝐸

𝑢𝑝
𝑡 . (71)

𝐶𝐸𝐻&𝑁,𝐺
𝑡 =

𝑁𝑏𝑢𝑠
∑

𝑃𝐺𝑛𝑡𝐶𝐼
𝐺
𝑛𝑡 . (72)
𝑛=1
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Fig. 1. The general time frame of the performance of an energy community facing an
extreme event.

0 ≤ 𝐶𝐸𝐻&𝑁,𝐺
𝑡 ≤ 𝐶𝐸

𝐺
𝑡 . (73)

Similarly, the W&S carbon emission constraints, which pertain to
the imported power from the main grid and DG generation, are as
follows:

𝑐𝑒𝑊&𝑆,𝑢𝑝
𝑡𝜔 = 𝑝𝑊&𝑆,𝑏

𝑡𝜔 𝐶𝐼𝑢𝑝𝑡 . (74)

0 ≤ 𝑐𝑒𝑊&𝑆,𝑢𝑝
𝑡𝜔 ≤ 𝐶𝐸

𝑢𝑝
𝑡 . (75)

𝑐𝑒𝑊&𝑆,𝐺
𝑡𝜔 =

𝑁𝛤
∑

𝜔=1
𝜈𝜔

𝑁𝑏𝑢𝑠
∑

𝑛=1
𝑝𝐺𝑛𝑡𝜔𝐶𝐼

𝐺
𝑛𝑡 . (76)

0 ≤ 𝑐𝑒𝑊&𝑆,𝐺
𝑡𝜔 ≤ 𝐶𝐸

𝐺
𝑡 . (77)

2.1.6. Resilience objective function
Achieving an accurate assessment of the resilience level of an EC

requires defining proper resilience metrics that consider event charac-
teristics as well as system performance during the event. In this paper,
four resilience metrics are considered, including the fragility index (FI),
the restoration index (RI), the voltage deviation index (VDI), and the
lost energy index (LEI). The FI and RI metrics indicate the withstanding
ability and restoration efficiency of the system against the event and
are calculated using the EC performance curve during the event. The
VDI and LEI metrics represent the quality of the EC during the event
and are obtained by the optimal power flow calculations. According
to Fig. 1, the time frame of the performance of an EC is divided into
five phases, namely pre-event, during-event, after-event, restoration,
and post-event (Younesi et al., 2022b). The performance curve can be
calculated based on different parameters of the power system, such as
the percentage of operational components or the percentage of supplied
loads during the event (Younesi et al., 2022a). In this paper, the
percentage of the supplied load is used to calculate the EC performance
curve as follows:

𝑃𝐶𝑡𝜔 = (1 −
𝑁𝑏𝑢𝑠
∑

𝑛=1

𝑝𝑠ℎ𝑒𝑑𝑛𝑡𝜔

𝑃𝐿𝑛𝑡
) × 100. (78)

In Fig. 1, the time durations between event phases have a large
influence on the calculated resilience metrics and exactly determining
these time periods is difficult, because they depend on the event
severity, the amount of the damages, and the recovery facilities and
efficiency. In this paper, it is assumed the degradation will start imme-
diately after the event(i.e., (𝑡𝑑 − 𝑡𝑒𝑠) = 0). In addition, the degradation
will continue at a fixed rate until the end of the event which is acquired
randomly in scenarios. It is also assumed the recovery immediately
starts after the event (i.e., (𝑡𝑟𝑠−𝑡𝑒𝑑) = 0) and will continue at a fixed rate.
In other words, all of these time durations are assumed to be relevant
to the event duration which is a stochastic parameter and determined
through scenarios.

Based on the performance curve shown in Fig. 1, the EC resilience is
represented in the dashed area, which should be minimized to achieve a
more resilient EC. Assume the 𝛤 as the set of scenarios. Therefore,𝑁 =
7

𝛤

|𝛤 | represents the number of scenarios. In addition, the probability of
each scenario is donated by 𝜈𝜔, which 𝜔 ∈ 𝛤 . Referring to the area
depicted for the 𝐹𝐼 index in Fig. 1, it can be calculated using (79).

𝐹𝐼 =
𝑁𝛤
∑

𝜔=1
𝜈𝜔

⎧

⎪

⎨

⎪

⎩

∫ 𝑡𝑝𝑒,𝜔𝑡𝑑,𝜔

[

𝑃𝐶𝑝,𝜔 − 𝑃𝐶𝜔(𝑡)
]

𝑑𝑡

𝑃𝐶𝑝,𝜔(𝑡𝑝𝑒,𝜔 − 𝑡𝑑,𝜔)

⎫

⎪

⎬

⎪

⎭

. (79)

To ensure the simulation remains tractable, the FI index can be
approximated based on the area of a triangle, as demonstrated in Fig. 1,
and is given as follows:

𝐹𝐼 ≈ 𝐹𝐼 =
𝑁𝛤
∑

𝜔=1
𝜈𝜔

[(

𝑃𝐶𝑝,𝜔 − 𝑃𝐶𝑝𝑒,𝜔
) (

𝑡𝑝𝑒,𝜔 − 𝑡𝑑,𝜔
)

2𝑃𝐶𝑝,𝜔(𝑡𝑝𝑒,𝜔 − 𝑡𝑑,𝜔)

]

. (80)

Referring to Fig. 1, the time period from 𝑡𝑟𝑠 to 𝑡𝑖𝑟𝑒 is associated with
the restoration efficiency and is calculated as the 𝑅𝐼 index using (81).

𝑅𝐼 =
𝑁𝛤
∑

𝜔=1
𝜈𝜔 ∫

𝑡𝑖𝑟𝑒,𝜔

𝑡𝑟𝑠,𝜔

𝑃𝐶𝑝𝜔 − 𝑃𝐶𝜔(𝑡)
(𝑃𝐶𝑝,𝜔 − 𝑃𝐶𝑝𝑒,𝜔)(𝑡𝑖𝑟𝑒,𝜔 − 𝑡𝑟𝑠,𝜔)

𝑑𝑡. (81)

Analogous to (80), the 𝑅𝐼 index can be approximated based on the
area of the dashed regions within the interval 𝑡 ∈ [𝑡𝑟𝑠, 𝑡𝑖𝑟𝑒] as expressed
by (82).

𝑅𝐼 ≈ 𝑅𝐼 =
𝑁𝛤
∑

𝜔=1
𝜈𝜔

[ (𝑃𝐶𝑝,𝜔 − 𝑃𝐶𝑝𝑟,𝜔)(𝑡𝑖𝑟𝑠,𝜔 − 𝑡𝑟𝑠,𝜔)
(𝑃𝐶𝑝,𝜔 − 𝑃𝐶𝑝𝑒,𝜔)(𝑡𝑖𝑟𝑒,𝜔 − 𝑡𝑟𝑠,𝜔)

+
(𝑃𝐶𝑝𝑟,𝜔 − 𝑃𝐶𝑝𝑒,𝜔)(𝑡𝑟𝑒,𝜔 − 𝑡𝑟𝑠,𝜔)
2(𝑃𝐶𝑝,𝜔 − 𝑃𝐶𝑝𝑒,𝜔)(𝑡𝑖𝑟𝑒,𝜔 − 𝑡𝑟𝑠,𝜔)

+
(𝑃𝐶𝑝,𝜔 − 𝑃𝐶𝑝𝑟,𝜔)(𝑡𝑖𝑟𝑒,𝜔 − 𝑡𝑖𝑟𝑠,𝜔)
2(𝑃𝐶𝑝,𝜔 − 𝑃𝐶𝑝𝑒,𝜔)(𝑡𝑖𝑟𝑒,𝜔 − 𝑡𝑟𝑠,𝜔)

]

.

(82)

It is important to note that the dashed area between 𝑡𝑒𝑑 and 𝑡𝑟𝑠,
considered as the time required for preparing the restoration process,
depends on the damages to other infrastructure such as transportation
and communications, redundancy of DERs, and the availability of
mobile resources and transformers. In this paper, it is assumed that
portable resources become available immediately following the event.
As a result, the 𝐹𝐼 and 𝑅𝐼 metrics are the sole metrics that need to be
optimized in order to improve resilience.

The remaining two resilience metrics, 𝑉 𝐷𝐼 , and 𝐿𝐸𝐼 , indicate the
merit of the EC operation during emergencies following an extreme
event. They are calculated based on real-time variables derived from
the optimal power flow (OPF). The 𝑉 𝐷𝐼 metric is computed as a
function of the voltage deviation from the scheduled value for each
bus, |

|

𝑉 ⋆
𝑛
|

|

∀ 𝑛 = 1,… , 𝑁𝑏𝑢𝑠, as follows, according to:

𝑉 𝐷𝐼 =
𝑁𝑏𝑢𝑠
∑

𝑛=1

{𝑁𝛤
∑

𝜔=1
𝜈𝜔

[ 𝑇
∑

𝑡=1

(

|

|

𝑉 ⋆
𝑛𝜔
|

|

− |

|

𝑉𝑛𝑡𝜔||
)

]}

. (83)

The 𝐿𝐸𝐼 index is determined by the percentage of lost energy in
the proposed scheduling time horizon, as described as follows:

𝐿𝐸𝐼 =
𝑁𝑏𝑢𝑠
∑

𝑛=1

{𝑁𝛤
∑

𝜔=1
𝜈𝜔

[ 𝑇
∑

𝑡=1

(

𝑃 𝑠ℎ𝑒𝑑𝑛𝑡𝜔 𝛥𝑡

𝑝𝑙𝑛𝑡𝜔𝑇

)]}

. (84)

As evident from (80), (82), and (83)–(84), the defined metrics for
resilience are dimensionless and obtained per unit. This allows for
the consideration of an appropriate resilience function that combines
these metrics to ultimately assess the overall resilience score of the EC.
Given that for a resilient EC, all defined metrics for resilience should
be close to zero, a sum function is employed in this paper to map the
resilience metrics into the overall EC resilience score and, consequently,
the resilience objective function (𝑓2) as follows:

𝑓 = 𝐹𝐼 + 𝑅𝐸𝐼 + 𝑉 𝐷𝐼 + 𝐿𝐸𝐼. (85)
2
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Fig. 2. The reliability after adding new DER units.

2.2. ELCC

The increasing penetration level of renewable and dispatchable
DERs in modern ECs has made DER-based ELCC more critical for EC
planners and operators. Particularly, the capacity credit of DERs can be
utilized for enhancing the fast restoration of EC after an extreme event
and ensuring the resilient operation of EC. In other words, the DER-
based ELCC provides a means to assess the capacity value of a set of
DER sources and serves as a measure of additional load that the system
can supply with no change in reliability (Garver, 1966). Thus, it can
be defined based on reliability metrics such as loss of load probability
(LOLP), and loss of load expectation (LOLE), among others. A simple
illustration of the proposed method for calculating ELCC in this paper
based on the reliability metric, is shown in Fig. 2.

In Fig. 2, 𝑅1 and 𝑅2 represent the reliability index of the EC before
and after adding new DER units, respectively, while 𝑅𝑔𝑜𝑎𝑙 denotes the
target reliability index. As shown in Fig. 2, the ELCC is calculated as
follows:

𝐸𝐿𝐶𝐶𝐷𝐸𝑅% =
(

𝐿2 − 𝐿1
Load total

)

× 100. (86)

In this paper, the LOLP index is calculated in both stages using (87)
nd (88). The 𝐿𝑂𝐿𝑃𝐻&𝑁 is calculated in day-ahead calculations and
epresents the expected LOLP of the system. Additionally, 𝑙𝑜𝑙𝑝𝑊&𝑆 is
etermined dynamically based on the generated scenarios, which take
nto account the event characteristics.

𝑂𝐿𝑃𝐻&𝑁 = 1
𝑁𝑡

𝑁𝑡
∑

𝑡=𝑡0

𝜁𝑡, (87)

𝑙𝑜𝑙𝑝𝑊&𝑆 = 1
𝑁𝛤

𝑁𝛤
∑

𝜔=1
𝜈𝜔𝑃𝑒,𝜔

1
𝑁𝑡

𝑁𝑡
∑

𝑡=𝑡0

𝜁𝑡𝜔, (88)

where 𝜁𝑡𝜔 is a binary variable and is 1 if at time 𝑡 in the scenario
𝜔 the shedded load becomes greater than zero (i.e. ∑𝑁𝑏𝑢𝑠

𝑛 𝑝𝑠ℎ𝑒𝑑𝑛𝑡𝜔 > 0).
Otherwise (i.e. ∑𝑁𝑏𝑢𝑠

𝑛 𝑝𝑠ℎ𝑒𝑑𝑛𝑡𝜔 = 0), it is 0. Note that 𝑝𝑠ℎ𝑒𝑑𝑛𝑡𝜔 is a positive
variable initially set to zero.

In fact, the LOLE index is another expression of LOLP, which is
defined based on minutes, hours, and days per scheduling horizon. In
this paper, LOLE is defined based on minutes per day, and for both
stages, it is given as follows:

𝐿𝑂𝐿𝐸𝐻&𝑁 = 𝐿𝑂𝐿𝑃𝐻&𝑁 × 24 × 60 minutes/day. (89)

𝑙𝑜𝑙𝑒𝑊&𝑆 = 𝑙𝑜𝑙𝑝𝑊&𝑆 × 24 × 60 minutes/day. (90)

In this paper, LOLE is employed to calculate the ELCC for each stage.
he ELCC calculation procedure is illustrated in Fig. 3.
8

Fig. 3. The flowchart of calculating the ELCC.

As depicted in Fig. 3, the imported power from the main grid
remains fixed at the value obtained from the OPF. Therefore, the power
of DERs is utilized to supply the additional load. Ultimately, the LOLE
is employed to determine the ELCC of DER units within the EC.

2.3. Integrating the ELCC into the general TSERS

After computing the ELCC in both stages as described in the previ-
ous section, it is integrated into the proposed resilience-economic EC
two-stage scheduling formulation for both stages. To incorporate ELCC
into the formulations, two new inequality constraints are added, as
presented in (91) and (92) for the H&N and W&S stages, respectively.

𝐸𝐿𝐶𝐶 ≤ 𝐸𝐿𝐶𝐶𝐻&𝑁 ≤ 𝐸𝐿𝐶𝐶. (91)

𝐸𝐿𝐶𝐶 ≤ 𝑒𝑙𝑐𝑐𝑊&𝑆 ≤ 𝐸𝐿𝐶𝐶. (92)

2.4. Mesh-view and disaster characteristics

The mesh view is a method for determining the precise location of
system components and modeling the behavior of extreme events on
the system (Younesi et al., 2022c). In this method, the EC is divided
into a finite number of two-dimensional cells. Each cell is described by
a pair of integers (e.g., (x,y)). By using the mesh view, the accurate
location of the EC components and the extreme event characteristics
such as the starting point (cell), route, endpoint, and the interaction
of the event with the EC components can be determined. Taking this
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Fig. 4. The mesh-view of a sample EC considering various events behavior.
information into account, the damage assessment of the EC following
an extreme event can be achieved with higher accuracy. Fig. 4 displays
an example of the mesh view of an EC, considering the behavior of
different types of events.

In this paper, the resilience of the EC is assessed by considering
four event types: hurricanes, tornadoes, earthquakes, and ice freezing.
The behavior of each event on the mesh-view is inspired by their
natural performance, as depicted in Fig. 4, the red cells represent the
event center, indicating that the equipment located in these cells will
be significantly affected. The light-orange cells represent the event
boundaries, and equipment in these cells has a high probability of
being affected. The remaining equipment outside of the event center
and boundaries is assumed to remain operational. For instance, in the
case of a tornado in Fig. 4, bus 24 and line 24–25 are heavily affected.
Additionally, buses 24 and 25, as well as line 23–24, have a high
probability of being affected.

2.5. The proposed optimization model

Eventually, after obtaining the mathematical model of different EC
operation players such as DERs, Loads as well as carbon emission and
ELCC-related constraints, the final optimization problem is formulated
as follows:
min {𝑓1, 𝑓2, 𝑓3}

s.t.
𝐻&𝑁 𝑎𝑛𝑑 𝑊&𝑆 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ∶
9

𝑂𝑃𝐹 ((6)–(14)) and ((30)–(46)),
𝐸𝑆𝑆𝑠 ((15)–(19)) and ((47)–(51)),
𝐸𝑉 𝑃𝑠 ((20)–(27)) and ((52)–(58)),
𝐶𝐸 ((70)–(73)) and ((74)–(77)),

𝐸𝐿𝐶𝐶 (91) and (92),
𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ∶

((63)–(69)).

(93)

2.6. The Augmented 𝜀-constraint method for multi-objective optimization

In order to deal with trade between cost, resilience, and emission
in the proposed tri-objective optimization problem, the augmented 𝜀-
constrained method is used in this paper. The general formulation of
the augmented 𝜀-constrained method is given as (Zakariazadeh et al.,
2014):

min

(

𝑓1 − 𝛿
𝐾
∑

𝑘=2

𝑠𝑘
𝑟𝑘

)

s.t.
𝑓𝑘 + 𝑠𝑘 − 𝑒𝑧𝑘 𝑘 = 2,… , 𝐾; 𝑠𝑘 ∈ 𝑅+

(94)

where

𝑒𝑧𝑘 = 𝑓max
𝑘 −

𝑓max
𝑘 − 𝑓min

𝑘
𝑞𝑘 − 1

× 𝑧, 𝑧 = 0, 1,… , 𝑞𝑘. (95)

where 𝑠𝑘 is slack variable, 𝛿 is a scaling factor, 𝑓max
𝑘 and 𝑓max

𝑘 are the
maximum and minimum of the kth objective function, respectively. 𝑒𝑧𝑘
is the zth range of the kth objective function, 𝑟 is the range of the kth
𝑘
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Fig. 5. The flowchart of the proposed tri-objective economic-resilience-emission optimization problem modeling.
objective function (i.e., 𝑓max
𝑘 − 𝑓min

𝑘 ), and 𝑞𝑘 is the number of equal
part.

The maximum and minimum of each objective function (𝑓min
𝑘 and

min
𝑘 ) are obtained from the individual optimization of each objective
unction. Then one of the objective functions is considered as the master
𝑓1) and the ranges of each 𝑘-1 objective function are considered as the
ew constraints and the Pareto front of the non-dominated solutions are
chieved. It should be noted that in this paper, the resilience objective
unction is considered as the master, and cost and emission objec-
ives are considered as the constraints. The flowchart of the proposed
ethodology is shown in Fig. 5. According to Fig. 5, the input data
ill be used in the pre-processing stage. Then the formulations will
e conducted and the final tri-objective economic-resilience-emission
ptimization problem is modeled as a mixed-integer linear program-
ing. Finally, the proposed model is solved and the Pareto front of
on-dominated solutions is extracted that can be used for informed
ecision-making based on the DSO limitations and priorities.

. Simulation results

.1. Scenario generation

In this paper, scenarios are generated based on uncertain param-
ters, as illustrated in Fig. 6. The uncertain parameters, including
10
the probability of event occurrence, event type, event severity level,
event location, market price, and WT generation, are initially classified.
The uniform distribution function is then employed to generate 5000
scenarios based on these uncertain parameters. To alleviate the compu-
tational burden of simulations, the number of scenarios is subsequently
reduced to 10 using the K-mean clustering method (Younesi et al.,
2021a).

To evaluate the effectiveness of the proposed scheduling method the
results are compared to the methodology presented in Younesi et al.
(2022b) considering three case studies namely Case I, Case II, and Case
III. It is worth noting that, cases I and II are taken from Younesi et al.
(2022b) with some minor modifications. Each case study prioritizes
different objectives as follows:

• Case I: In this case, the economic index of the energy community
is the sole objective function, while the resilience and carbon
emission indices are ignored.

• Case II: In this case, only the resilience index is considered as the
objective.

• Case III: In this case, all three indices are considered using the
augmented 𝜀-constraint method.

These case studies are selected based on prioritizing each objective
function. In other words, the simulations present the impact of inte-
grating each objective function (i.e. economic, resilience, and carbon
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Fig. 6. The scenario generation procedure.

mission) in the final optimization problem to highlight the role of
ERs and their ELCC. In fact, the decision-maker can investigate the

mpact of each objective function on the simulations and then will
e able to make informed decisions on system planning considering
heir priorities and system limitations comparing the results in dif-
erent case studies. It is worth noting that the system planner has
he flexibility to assign different constraints to each resilience metric
ased on its planning priorities and constraints, therefore the ‘‘best
ptimal solution’’ has been identified in the Pareto front by fixing some
onstraints to the three metrics. In this paper, the Pareto front of non-
ominated solutions is obtained, one of the solutions has been selected,
nd the operator can adjust the solution according to its priorities. The
roposed methodology was formulated using GAMS and solved on a
evice with a Core i7 processor and 16 GB RAM.

.2. Case study 1: IEEE 33-bus test system

This system consists of 33 buses, 33 lines, 5 distributed diesel
enerators, 4 energy storage devices, 4 electric vehicle parking (EVP)
ots, and 4 wind generators. The technical data of the system and
ts components can be found in the Ref. (Younesi et al., 2021a). The
llocation of the distributed generation units is assumed to be as shown
n Fig. 4 (Younesi et al., 2021a). Due to physical and geographical
imitations such as distance, mountains, and lakes, it is not possible
o add maneuvering lines between all system buses. However, in this
aper, it is assumed that 5 new lines are available to be added in
he reconfiguration plan, taking into account these limitations. These
ew possible lines are highlighted in blue in Fig. 4 and they are
nitially disconnected (off) in normal operating conditions. The new
ossible lines are represented by the dark blue color in Fig. 4 and they
re initially off (disconnected) in normal condition. Simulations are
11

onducted in all three cases based on the stochastic scenarios.
The optimal reconfiguration plans for different cases are illustrated
in Fig. 7. It is observed that in Case I, based on the economic index,
three new lines need to be added between buses (8,21), (18,33), and
(25,29). However, in Cases II and III, only two new lines between
buses (8,21) and (18,33) are required. This indicates that line (25,29)
primarily contributes to the economic index and does not significantly
improve the resilience and carbon emission indices. On the other hand,
lines (8,21) and (18,33) are crucial as they have a positive impact on
all three indices, namely economic, resilience, and carbon emissions.

The carbon emissions from the distributed generation units are
assumed to be fixed at 190 𝑔∕𝑘𝑊 ℎ throughout the 24 h of the day.
However, the carbon emissions from the main grid vary during different
hours of the day. The carbon intensity data for a typical autumn day
are collected from the official carbon intensity API for Great Britain
developed by National Grid (available at https://carbonintensity.org.
uk/) and are depicted in Fig. 8. This data provides information about
the carbon intensity levels during different hours, allowing for more
accurate modeling and analysis of the carbon emissions from the main
grid.

Fig. 9 illustrates the carbon intensity of the distributed generation
(DG) units and the main grid in different cases. It is important to
note that, for the purpose of assessing the results, scenario 4 has
been randomly selected as an example. In scenario 4, a very severe
hurricane event has occurred, starting at 9:00 PM (hour 21:00) from
cell (20, 3) and ending at 5:00 AM the following day in cell (2, 6). This
event has significantly impacted the entire system, affecting multiple
system components. The carbon intensity data provide insights into the
variations in carbon emissions from both DG and the main grid during
this extreme event scenario.

Based on Fig. 9(a), the following observations can be made regard-
ing the carbon intensity in different cases:

• In Case I, the carbon intensity of the distributed generation (DG)
units is higher during the hours of 3:00 PM to 7:00 PM. This is due
to the high market prices during these hours, leading to increased
utilization of DGs to minimize energy purchases from the main
grid and reduce costs;

• In Case II, where only the resilience index is considered, the
carbon intensity of DGs is notably higher compared to the other
cases. In this case, the primary focus is on improving resilience,
while the cost and carbon intensity indices are disregarded;

• In Case III, where the carbon intensity is incorporated in the ob-
jective function, it can be observed that the carbon emissions are
significantly reduced compared to the other cases. This indicates
that considering the carbon intensity in the optimization process
leads to a notable decrease in carbon pollution.

Regarding the grid carbon intensity shown in Fig. 9(b), it is observed
that during the hours of 9:00 PM to 5:00 AM, the carbon intensity is
zero. This is because, during this time period, the energy community is
dealing with extreme events and relies minimally on imports from the
main grid. Similar to Fig. 9(a), the carbon intensity is highest in Case II
and lowest in Case III, highlighting the impact of incorporating carbon
intensity in the objective function.

The concept of ELCC in this paper is used to assess the capacity
value of DG and wind units in enhancing the resilience of the energy
community. The ELCC represents the reliable extra power that DG
and wind units can provide during an emergency event, contributing
to the improvement of resilience. It should be noted that the ELCC
is calculated based on the OPF, which is based on the EC topology.
Therefore, it can be concluded that the impacts of the newly added
line in the reconfiguration plan are considered in the ELCC calculation,
inherently. Fig. 10 illustrates the calculated ELCC of DG and wind units
in the simulation cases. It is observed that in Case I, where the resilience
index is ignored, the generation of DGs and wind turbines decreases
during the event hours (21:00 PM to 5:00 AM). Consequently, their
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Fig. 7. The proposed energy community reconfiguration results.
Fig. 8. The carbon intensity data of the main grid for the proposed scheduling day.

ELCC increases, indicating their potential to provide additional reliable
power during the event. It is important to note that the maximum ELCC
level is not limited and can reach up to 100%, while the lower limit is
set to 20% in all case studies. From a resilience perspective, in Cases
II and III, where the resilience index is considered, the ELCC of DG
and wind units decreases compared to Case I. This implies that the
energy community operator utilizes these units at their full capacity to
improve the resilience index. As a result, the ELCC decreases, signifying
the enhanced capability of these units to provide reliable power during
the event. In fact, the analysis of the ELCC values reveals that the
integration of the resilience index in the optimization process (Cases
II and III) leads to a decrease in the ELCC of DG and wind units. This
indicates a stronger reliance on these units to enhance the resilience of
the energy community during an emergency event.
12
The Pareto front of non-dominated solutions for the proposed three
objective optimization problems is displayed in Fig. 11. In this paper,
the resilience objective function is considered the master objective, and
thus, the Pareto front showcases the trade-off between the resilience
objective function and each of the other objectives (i.e. operating cost,
carbon emission, and both of them). The presented Pareto front pro-
vides a comprehensive visualization of the trade-off between different
objectives, allowing decision-makers to make informed decisions based
on their specific requirements and preferences (see Harrison et al.
(2007), Zakariazadeh et al. (2014) for more detail).

In fact, the decision maker can have measures of the consequences
of its choices in terms of all economic-resilience-emission objective
functions and then select the best solution considering the regulatory
limits related to economic constraints, resilience-oriented performance,
and emission constraints related to the energy community. It should be
noted that the selection of the best solution is not the main concern
of this paper, therefore, it is assumed that the EC operator as the
decision-maker determine the upper admissible levels allowed for each
economic, carbon emission, and resilience objective function and then
select the best solution among the non-dominated solutions in the
Pareto front, which is located in the acceptable range for all objective
functions. In this paper, it is assumed that the EC operator selects
the best solution from the non-dominated solutions from the Pareto
front by fixing the following constraints to the three metrics as follows:
𝑓1 < 15473.18778$, 𝑓2 < 5.506, and 𝑓3 < 55.80𝐾𝑔. It is worth noting
that the selected solution is just used for analysis purposes while the
final decision is made by the decision maker, not by the analyst.

The performance curve of the energy community, depicted in
Fig. 12, and the resilience metrics, shown in Fig. 13, serve to showcase
the effectiveness of the proposed multi-objective scheduling scheme
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Fig. 9. The carbon emission of DG and grid in different case studies.
Fig. 10. The ELCC of distributed generation units in scenario 4.

n enhancing resilience. It is evident from the figures that Case I,
hich does not prioritize resilience as an objective, yields the worst
erformance curve. Conversely, Case II, which focuses solely on re-
ilience, exhibits the best performance curve. These results highlight
he importance of incorporating resilience as a key objective in the
cheduling process. By considering resilience alongside other objec-
ives, the system’s ability to withstand and recover from extreme
vents can be significantly improved. This demonstrates the value
f a comprehensive and balanced approach that takes into account
oth economic considerations and the system’s ability to adapt and
espond to disturbances. The performance curve provides a visual
epresentation of how different scheduling strategies impact the overall
erformance of the energy community during extreme events. It serves
s a valuable tool for decision-makers to assess and compare the
ffectiveness of different scheduling approaches in terms of their impact
n system resilience.

Fig. 13 depicts the variations of individual resilience metrics and the
verall energy community resilience index in different case studies. The
verall resilience index is computed as the sum of the four resilience
etrics (FI, RI, VDI, and LEI) with equal weight factors of 1, as

ndicated in Eq. (85). It is worth noting that the system planner has the
lexibility to assign different weight factors to each resilience metric,
ased on their planning priorities. By adjusting the weight factors,
he planner can allocate more or less importance to specific resilience
etrics, thereby tailoring the overall resilience index to align with the

pecific goals and requirements of the energy community.
Fig. 14 illustrates the revenue of the energy community in scenario

for different case studies. It can be observed that in case II, where
he focus is solely on resilience, the revenue decreases compared to
13

ase I. This reduction in revenue is attributed to the allocation of
resources and generation capacity to enhance the system’s resilience
during the event. On the other hand, in case III, where a balanced
integration of economic, resilience, and carbon indices is considered,
the revenue during normal operation hours can surpass that of case
I. However, during the event (i.e., hours 24:00 AM to 3:00 AM), the
revenue in case III is lower than that in case I due to the prioritization
of resilience and carbon emission reduction over maximizing economic
gains. Overall, the results highlight the trade-offs between economic
performance, resilience enhancement, and carbon emission reduction
in different operational scenarios.

To demonstrate the behavior of EVPs and ESS devices, the perfor-
mance of the EVP located at bus 33, and ESS located at bus 26 during
scenario 4 are shown in Fig. 15.

From Fig. 15(a), it can be observed that the EV joined the EC at
20:00 PM and disconnected from the system at 10:00 AM. Throughout
its connection period, the EV was charged during normal operation
hours and when the energy price was low. It is important to note that
during the event, which occurred between 21:00 PM to 5:00 AM, the
EV was not allowed to charge, but it discharged based on its SOC
to support the power supply in islanding mode. Similarly, the Energy
Storage System (ESS) discharged during the event to help mitigate load
losses. Additionally, the ESS was charged during hours when the market
price was low and discharged during hours when the market price was
high, such as at 17:00 PM. In essence, Fig. 15 demonstrates that both
the EVP and the ESS devices contribute to enhancing grid resilience
while keeping operating costs low.

Fig. 16 illustrates the total wind generation in scenario 4. It is
observed that the resilience index in cases II and III has resulted in
an increase in the overall wind generation. However, during the event
hours, the wind generation decreases. This decrease can be attributed
to the impact of the event on the distribution lines, which reduces
their capacity to transfer power within the system. As a result, the
wind generation during these hours is adversely affected. Therefore,
the resilience measures implemented in cases II and III have positively
influenced the total wind generation, except during the event hours
when the distribution lines’ power transfer capacity is compromised,
leading to a decrease in wind generation.

Fig. 17 provides insights into the performance of the Distributed
Generation (DG) units and the amount of imported power from the
main grid in scenario 4. It allows for a deeper investigation into the
relationship between DG generation and imported power. During the
event period (hours 21:00 PM to 6:00 AM), the energy community
operates in islanding mode, meaning that no power is imported from
the main grid. Consequently, the imported power is zero during this
period. In case III, where carbon emissions are taken into account, both
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Fig. 11. The Pareto front of non-dominated solutions.
Fig. 12. The performance curve of the proposed energy community facing the extreme
event in scenario 4.

the grid import and DG generation are minimized. This indicates a
conscious effort to reduce carbon emissions while maintaining system
functionality. On the other hand, in case II, both the DG generation and
imported power are maximized. This is because the primary objective
of the system is to enhance the resilience index. By maximizing both
the DG generation and imported power, the system aims to ensure
sufficient power supply and improve its ability to withstand and recover
from disruptive events. As a result, Fig. 17 highlights the relationship
between DG generation and imported power in scenario 4. During the
event, the energy community operates independently, resulting in zero
14
imported power. In case III, carbon emissions are minimized, leading
to reduced grid import and DG generation. Conversely, in case II, both
DG generation and imported power are maximized to enhance system
resilience.

Fig. 18 represents the sum of the deviation in bus voltages, which
serves as a technical metric. It is important to note that in all cases, the
voltage buses are maintained within the range of 0.95 to 1.05 p.u. The
figure illustrates the deviation of the bus voltages from the ideal value
of 1 p.u.

Based on Fig. 18, it is evident that the voltage deviation remains low
in cases II and III. This can be attributed to the fact that in these cases,
the voltage deviation index (VDI) is considered a resilience metric and
is integrated into the optimization objective function. As a result, the
system is designed to prioritize voltage stability and minimize voltage
deviations. In contrast, in case I, the voltage deviation notably increases
during the event hours. This indicates that the system’s resilience to
voltage variations is compromised during this period, possibly due
to limited contingency measures or suboptimal operation strategies.
Furthermore, during normal operation hours, the VDI is higher in
case III compared to cases I and II. This is primarily because case III
takes into account carbon emissions and imposes limitations on both
imported power and DG generation. Consequently, the system operates
with reduced power resources, which can result in higher voltage
deviations during normal operation hours. In summary, Fig. 18 reveals
that cases II and III maintain low voltage deviations due to the inclusion
of VDI as a resilience metric in the optimization objective. Conversely,
case I experiences significant voltage deviations during the event hours.
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Fig. 13. The resilience metrics of the proposed energy community.
Fig. 14. The revenue chart of the proposed energy community in scenario 4.
Additionally, case III exhibits higher VDI during normal operation
hours compared to cases I and II, as carbon emission constraints restrict
imported power and DG generation.

4. Conclusions

This paper aims to develop a multi-objective economic-resilience-
carbon emission stochastic scheduling mechanism for distributed en-
ergy resources (DERs) based energy communities (ECs), utilizing recon-
figuration and effective load-carrying capability (ELCC) quantification.
The key contribution of the proposed method lies in the integration of
a mesh-view scheme, which captures the correlation between extreme
event locations and energy community component locations within
the mathematical formulations. By modeling the behavior of extreme
events on the system and analyzing the correlation between event
location and system components, the mesh-view approach enhances
the understanding of extreme event impacts on ECs. To evaluate the
proposed method, 5000 scenarios were initially generated, incorporat-
ing stochastic parameters such as event characteristics (i.e., location,
severity level, and type), real-time market price, electric vehicle (EV)
characteristics (i.e., arrival time, departure time, and arrival state of
charge), and wind generation. To manage computational complexity,
the number of scenarios was reduced to 10 using the k-means clustering
method, implemented in MATLAB. Numerical simulation case studies
have been demonstrated on the IEEE 33 bus test system, encompassing
various DER units, including EVs, diesel generators, energy storage
systems, and wind turbines. The simulation has been conducted and
illustrated under three distinct cases, each based on different opti-
mization objective functions and considering four different event types
15
including storm, hurricane, earthquake, and ice freezing. The results
highlighted the importance of an appropriate method for selecting
the best solution for economic-resilience-carbon emission indices to
achieve a balanced approach between resilience and economic metrics
within low-carbon ECs. Specifically, energy storage and electric vehicle-
to-grid (EVP) facilities demonstrated their significance in reducing
operating costs through optimized charge/discharge behaviors during
different market price hours and extreme events, consequently im-
proving resilience. This trade-off between cost reduction and enhanced
resilience presented a win-win situation for energy communities. Fur-
thermore, the simulations showcased the substantial contribution of
wind and distributed generation units in providing reliable power
during emergencies following extreme events, further strengthening
energy community resilience.

The findings of this study open up several potential avenues for
future research in the field of resilient ECs. Further investigation can
be conducted to incorporate advanced forecasting techniques and real-
time data analysis for enhancing the accuracy of extreme event pre-
diction and enabling more proactive decision-making in managing ECs
during emergencies. The proposed framework can also consider multi-
community interactions, enabling the analysis of resilience at a larger
scale and facilitating coordination between neighboring communities.
In addition, the economic and resilience metrics can be expanded to
encompass social factors, enabling a more holistic evaluation of EC
performance. These potential directions can contribute to the develop-
ment of robust and adaptive ECs that effectively address the challenges
posed by extreme weather events while promoting sustainability and
resilience.
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Fig. 15. The charge/discharge behavior of EVP and ESS devices compared to real-time market price in scenario 4.

Fig. 16. The total wind generation in scenario 4.
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Fig. 17. The total DG generation vs. imported power in scenario 4.
Fig. 18. The sum of deviation in the energy community bus voltages in scenario 4.
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