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Abstract—The growing integration of distributed energy re-
sources (DERs), power electronic devices, and flexible loads in
power systems is increasing the complexity and uncertainty in
the modern power grid, bringing new challenges in its operation
and control. However, with the recent advancement in artificial
intelligence techniques, reinforcement learning (RL) has received
increasing research interest. It has shown its potential to ensure
reliable operation and improve the resilience of the power grid.
Effective RL training requires significant interaction with an en-
vironment which can be difficult in the case of large-scale power
system models due to long simulation duration. To address this
issue, this paper proposes a co-simulation framework involving
real-time digital environment simulation for accelerated training
of RL agents. The proposed co-simulation framework is tested
for providing fast frequency response (FFR) to the microgrid
model and analyzed based on its training speed compared to
another RL training approach based on an equivalent C-code
environment model interface. Results show that the proposed co-
simulation framework can speed up the RL training process by
approximately 17 times while generating optimal RL agents.

Index Terms—Reinforcement Learning, Power System, Opal-
RT, Fast Frequency Response, Soft Actor-Critic .

I. INTRODUCTION

The critical electricity infrastructure in recent years has
started undergoing an energy transition, with the gradual
decrease of fossil fuels and increasing penetration of renew-
able energy resources (RES) like solar energy, wind power,
increasing integration of power electronic devices, and flexible
loads such as electric vehicles and distributed energy storage
system (ESS) [1], [2]. Although this transformation has made
a significant contribution to reliable, safer, and cleaner energy,
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it also brings new challenges such as less predictable power
generation, system complexities, and uncertainties.

In recent years, the deployment of advanced information
and communication technologies within the power system,
such as advanced metering infrastructures (AMIs), phasor
measurement units (PMUs), and wide area monitoring systems
(WAMS), has significantly enhanced access to a large volume
of mutually correlated data in complex structures [3]. The
information contained in this data is valuable and can be
used to supplement the shortcomings of physical model-based
methodologies for the proper operation and planning of the
modern power grid. Using these data, machine learning (ML)
can help to address the mentioned challenges in the modern
power grid [4], [5]. ML can extract useful information from
historical data, can deal with extremely uncertain system
dynamics, and can generate adaptive models.

Among different ML-based methods, Reinforcement Learn-
ing (RL) is one of the most significant branches for power
system controls and other decision making processes. RL is
particularly effective at self-learning through interactive trial
and error with dynamic environments. Due to its benefits, RL
is now widely used in industries including robotic control,
industrial manufacturing operation, and scheduling [6], [7].
By analyzing reward feedback from its experiences, RL learns
and becomes more resilient against uncertain or highly unpre-
dictable dynamics. This allows RL to create optimal policies
without the need for the knowledge of the system dynamics.
This makes RL a suitable approach, especially for control and
optimization in power systems [8].

Much research has been conducted to showcase the imple-
mentation of RL in operational control, optimizing smart grids,
electricity markets, and demand-side management [9]–[12]. To
obtain optimal agents from RL training, it is necessary for
RL agents to have significant interaction with an environment
or at least with high-fidelity environment simulation [13].
However, the computational burden of simulation, especially
high-fidelity simulation, grows significantly with the size and
complexity of the power system environment. As a result,
the simulation duration significantly increases impacting the
training process of the RL agent.

One method to manage the complexity of a large-scale
power system model is to implement a hierarchical frame-
work to divide the major tasks into more manageable sub-
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tasks [14]. However, due to its design complexity, lack of
dynamic adaptation capability, and lack of general hierarchical
framework, studies of RL application in power systems with
hierarchical framework are rare [15]. Another approach to
manage high-fidelity simulation is to implement multi-agent
deep RL (MADRL) based on centralized training and de-
centralized execution [16], [17]. However, when dealing with
large-scale power systems, the current MADRL algorithms
face issues with convergence, scalability, coordination, and
training duration [15].

This study proposes a co-simulation framework with online
training of RL agents to address the aforementioned issues and
speed up the training process of RL agents for large power
systems. The proposed co-simulation framework uses a real-
time digital simulator (namely an OPAL-RT) to achieve high
computational speed while performing high-fidelity simulation
for RL training and evaluation. To evaluate the effectiveness of
the proposed co-simulation framework, the computational time
to conduct one episode of training is compared with the stan-
dard approach of RL training involving an equivalent C-code
environment. The real-time simulation training environment is
shown to significantly enhance the feasibility in training RL
agents for complex power system operations.

The rest of the paper is organized as follows: section II
introduces the proposed co-simulation framework with online
training of the RL agent for the power system. Section III
explains the implementation of the proposed co-simulation
framework for fast frequency response (FFR) in microgrid.
The simulation setup for the implementation of the proposed
framework is explained in Section IV. Results and Conclusions
are presented in Sections V and VI.

II. PROPOSED CO-SIMULATION FRAMEWORK WITH
REAL-TIME DIGITAL ENVIRONMENT
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Fig. 1. Proposed co-simulation framework

This section outlines the architecture of the proposed frame-
work for the online training of the RL agents for the power
system dynamics including the simulation with modeling and
control in real-time digital environment and communication
interface. Fig. 1 displays the schematic of the proposed co-
simulation framework that can accelerate the training process
of RL agents for power system dynamics. The red arrow lines

represent the flow of data involved in the training of the RL
agent, while the black arrow lines represent the data flow in
a real-time simulation environment.

The first block in the proposed framework contains a
real-time simulation environment which is performed using
a combination of OPAL-RT and RT-Lab, integrated with
the Artemis toolbox for advanced real-time electromagnetic
simulation. OPAL-RT is a real-time simulation platform fully
integrated through RT-Lab with MATLAB/Simulink. The pro-
posed framework is further improved by the accelerated real-
time simulation provided by the integration of the Artemis
toolbox. This is especially crucial when simulating scaled
power grid models or micro-grid models to ensure reliable,
accurate, and fixed-time step computations.

Here, the Simulink model is grouped into three subsystems
master, slave (the term from the Opal-RT library, further
referred to as ‘secondary’), and scope subsystem (terminology
derived from RT-lab environment). The master subsystem
contains the power system model, which generates states and
receives control signals. The SimPowerSystems (SPS) Toolbox
from Simulink is used to model the power system model
since the models built in SPS are compatible with OPAL-RT
and can be executed in real time. The secondary subsystem
contains a copy of the RL-based controller to ensure the flow
of the control signal for the power system model in real-time.
The scope subsystem contains scopes to monitor the status
and control action during the training process. This partition
enables the implementation of the RL-based controller and
the power system model in the distinct cores, as well as
the evaluation of the computing time of the control signals
from the RL-based controller. This process helps to simulate
the the power system model at a significantly faster time
step to accurately capture all of the system dynamics which
accelerates the training process of the RL agent. To import the
RL-based controller into the Simulink model, the following
steps are performed:

1) Write C code with actor-network prediction logic, and
corresponding header files with necessary declarations for
the actor-network functions and constants.

2) Use the S-function builder in MATLAB/Simulink to
implement the written c code. The intel compiler is used
to build the S-function builder inside the Simulink model.

3) Execute the model in MATLAB/Simulink.
In this block, the state estimates obtained from the power
system model in the master subsystem are sent to the RL-
based controller in the secondary subsystem. Then RL-based
controller feedbacks the control action signal to the power
system model.

The second block in the proposed framework contains
online training of RL agents implemented in Python. The
PyTorch package from Python is used to model and optimize
the neural networks involved in the RL algorithm. RL is a
machine learning technique that focuses on training agents
that are capable of producing policies that result in maximum
cumulative reward over time [18]. In RL, the decision-making
problem is modeled as a Markov Decision Process (MDP). Its
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key concepts are a) State (s), b) Action (a), and c) Reward
(r). Reward is the signal reflecting the desirability of an action
for a given state. For the RL agent to generate an optimal
policy, it is very important to define the reward function to
properly align with the overall goals of the agent/controller.
In this block, the state estimates and control action from the
Simulink model are sent to be used as input for the designed
reward function. Then the state estimates, control action, and
the calculated reward are used for the training of the RL agent
as shown in Figure 1.

The third block in the proposed framework contains a
communication interface based on the Internet Protocol (IP),
which routes and addresses the data packets so that they
can travel across the computing devices in a network [19].
The most popular transport layer protocols operating over IP
are Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP), which are both available in the I/O interface
from RT-lab [20] and also can be implemented in Python
via sockets [21]. For an RL agent training based on Python,
the socket package from Python is used to build TCP/UDP
sockets to receive state estimates and control action from the
Simulink model and send the parameters of the RL agent to
the S-function of RL-based controller in Simulink. For the
Simulink model operating in Opal-RT, the RT-LAB Opinput
and Opoutput blocks are used to receive parameters of the
RL agent and send state estimates and control actions in the
training environment of the RL agent. The details regarding
the TCP/UDP setup in the I/O Interfaces in RT-LAB are given
in [22].

Before compilation, the .h, .c, and .tlc files, which are
the header and code files for the RL-based controller in
Simulink model and S-function generated wrapper file, should
be uploaded in the file properties of RT-LAB. After completing
the configuration, the following steps are followed to perform
the proposed co-simulation framework.
Step 1: load and execute the simulink model in RT-LAB
Step 2: wait for simulink model to stabilize to avoid intial

transient.
Step 3: implement the python code with TCP/UDP socket to

establish the connection with simulink model
Step 4: save optimized RL Agent neural networks

The UDP protocol-based timing diagram following the
above steps to perform the proposed co-simulation framework
is shown in Fig. 2.

III. IMPLEMENTATION OF THE PROPOSED CO-SIMULATION
FRAMEWORK FOR FAST FREQUENCY RESPONSE IN

MICROGRID MODEL

With increasing penetrations of inverter-based resources
causing faster grid dynamics and system inertia reduction,
the need for FFR is growing for power system frequency
stability [23]. Among various FFR solutions, using trained RL
control signals through an Energy Storage System (ESS) has
been shown to provide effective FFR [24]. However, better
learning of RL-based FFR agents requires a higher frequency
of interaction with the environment. This can be difficult in the
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(state+control data)

Process data:
train RL agent
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agent parameters

Client
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. . .

(Real-Time Simulation)(Online Training)

Fig. 2. Network timing diagram

case of a power system or microgrid model because of their
long simulation period that comes with their complexity, size,
and the need for small time steps. Therefore, the proposed
co-simulation framework is tested for proving FFR in the
microgrid model as shown in Fig. 3

In Fig. 3, the power system model considered is a modi-
fied microgrid model from Cordova, Alaska. There are two
substations called ORCA and Humpback Creek (HBC) with
voltage levels of 12.47 kV and 0.48 kV respectively in the
microgrid model. The microgrid model also consists of an
Energy Storage System (ESS), which is modeled by a DC
source and an inverter. The model also comprises a phase-
locked loop (PLL) that measures the change in frequency
(∆ω).

A recursive Bayesian filter called the Kalman filter (KF)
uses measurements and estimates of states from the previous
timestep to determine optimal current states [25]. While the
process of trial and error is used to find the weights for
noise-free systems, a previous work outlines a methodology
for weight selection for noisy systems [26]. In this study,
the measurement ∆ω from the microgrid model is utilized
to estimate the rotor angle ∆δ, change in frequency (∆ω),
rate of change of frequency ROCOF (∆ω̇), and disturbance
in the system Pd using the KF. These state estimates are then
used by the RL-based controller to generate a reference control
signal Pref for the ESS unit. The ESS unit then generates
corresponding control signal ∆Pinv , which is controlled power
from the inverter.

Among different RL algorithms, the FFR is implemented
using an off-policy algorithm called Soft Actor-Critic (SAC),
because it offers a faster convergence rate and higher sampling
efficiency. In SAC, there are three major components. First
is a replay buffer D to store the agent’s experiences to
allow off-policy training. Second is actor-critic architecture
with deep neural networks (DNN) for policy π and state-
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Fig. 3. Implementation of the proposed co-simulation framework for FFR in Cordova Benchmark

action value Q respectively. And third is an entropy H to
promote exploration while preserving learning stability. The
loss functions associated with the components Q, π, and H
are given in [18]. In SAC, the objective is to determine the
optimal stochastic policy π∗ that maximizes its expected sum
of rewards as well as entropy. To obtain this objective, the
optimal parameters of the SAC components are learned with
the SAC algorithm as proposed [24]. To align this objective
with FFR, it is important to model MDP accordingly. So for
the environment model of Cordova Benchmark, the MDP is
modeled as follows:

1) State (st): [∆ω,∆ω̇, Pd ]
2) Action (at): Pref

3) Reward (rt): For the given objective, the rt is defined as

r =− [Q∆ω(∆ωobs −∆ωref )
2+

Q∆ω̇(∆ω̇obs −∆ω̇ref )
2 +RP 2

ref ],

where [Q∆ω,Q∆ω̇,R] are the penalizing weights. The
learning process of the SAC agent is further improved by
normalizing the rt.

In Fig. 3, the data transfer across two platforms takes place
with the implementation of the UDP communication interface
represented by the red arrow lines. Here, the state estimates,
control action, and parameters of actor DNN are transferred.

IV. SIMULATION SETUP

The Cordova benchmark model is operated with a step
time of 0.01 ms while the Kalman Filter and SAC RL-based
controller is operated with a step time of 20 ms. The difference
in the step time is explained in [27]. To support this multi-
rate configuration setup within the proposed co-simulation
framework, the decimation factor in the RT-lab is set at 400,

which is a sample acquiring factor for UDP communication
with respect to the sample time of the micro-grid model. For
KF, the values used for measurement noise covariance and
process noise covariance were based on [24].

To implement SAC, two critic DNNs (Q1 and Q2), two
target critic DNNs (Q1 and Q2), and one actor DNN (π) are
utilized. The details regarding the use of four critic networks
are explained in [18]. The dimensions of the layers in these
DNNs corresponding to the modeled MDP in Section III
are presented in Table I. The values for hyper-parameters
of the SAC algorithm were obtained from [18]. The DNNs
in the SAC-based FFR are optimized using Adam optimizer,
available in the PyTorch package.

TABLE I
SUMMARY OF NETWORK ARCHITECTURE

Networks Input Size Hidden Size Hidden Size Output Size
(1) (2)

Qθ 4 256 256 1
πϕ 3 256 256 2

The design of the data packets for this study is shown in
Fig. 4. To deal with the DNNs with a high number of layers
and neurons, the weights and bias of the actor-network are
transferred in chunks, within a limit imposed by the underlying
IPv4 protocol (65,535 bytes for UDP datagram) [28].

To generate a robust SAC agent that can provide effective
FFR, it is important to train the agent while subjecting the
microgrid model to various load disturbance cases. The train-

Note: The code for real-time digital environment simulation with proposed
co-simulation framework will be available as open-source at https://github.
com/PAslami/Co-simulation-framework-for-RL-accelerated-training upon the
acceptance of the paper.
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Fig. 4. byte structure of the data packets (a) from server to client (b) from
client to server

ing of the SAC agent was performed on Intel(R) Core(TM)
i7-10700T CPU @ 2.00GHz with a 64-bit operating system.
The training was started at the base load of 0.5 p.u. Once
the system went to a steady state, the load was increased by
applying a square signal with a period of 200 sec with step
load amplitude varying between [-0.2, 0.2] p.u. The control
action from the SAC agent was limited between [-0.5, 0.5] p.u.,
which is determined by the ESS unit. The episode duration was
set to 100 sec [24].

To evaluate the performance of the proposed co-simulation
framework in accelerating the training of RL agents, another
training approach involving the Python-based RL controller
interfaced with the C-code of the Simulink-based environment
is also conducted [24]. In this approach, the C-code from a
Simulink model is created from Simulink Coder which is then
compiled into shared library using gcc compiler. Using the
ctypes library, the built shared library is then loaded into
Python.

Along with the speedup of the training process, the pro-
posed co-simulation framework must support the generation
of effective and optimized RL agents. To test this, the trained
RL agent is tested with the micro-grid model under the step
load change of 20%. For this, the simulation is started with
the base load of 0.5 p.u. and at 170 sec load is increased to
0.7 p.u. The testing simulation run time was set to 325 sec.

V. RESULT AND ANALYSIS

To analyze the performance of the proposed co-simulation
framework, the simulation was conducted based on the setup
described in Section IV. In this evaluation, training duration
per episode and the RL agent’s capability to provide FFR to
the microgrid model were used as key metrics.

TABLE II
TRAINING DURATION PER EPISODE WITH DIFFERENT APPROACHES

proposed co-simulation C-code based
framework interface model

training duration
per episode 209 sec 1.01 hrs

Table II shows the computational time it took for the two
approaches to train the RL agent for the given microgrid
model. It can be observed that the approach with the C-code
based interface model takes a prohibitively long time to train
one episode, which suggests that it will take an extremely
long time to train RL agents for a higher number of iterations.
This poses an increased risk of interruptions and conflicts to
the training process and delays in the timely implementation
of RL agents. Also with this approach, the training duration

increases with increase in the complexity of the power system
model used, making it very difficult to conduct proper RL
training for larger power system model.

On the other hand, it can be observed that with the proposed
co-simulation framework, it takes a relatively short (and com-
putationally feasible) time to train one episode. While com-
paring, the proposed co-simulation framework outperforms
the approach with the C-code based interface model with
17.4 times faster training duration. Because the simulation of
the microgrid model takes place separately within the Opal-
RT digital simulator, the environment simulation does not
impact the computational time associated with RL training;
the training duration remains constant even with the increased
complexity of the power system model. As the Opal-RT
has special hardware and software features for large-scale
power system simulation, it becomes easier to handle complex
power system models. Therefore, the training duration in
the proposed co-simulation framework is expected to remain
relatively constant, even with a larger power system model,
leading to the ability to train RL agents across a variety of
complex power system tasks. Moreover, it is also expected
that the proposed co-simulation framework will be adaptable
to the changing power system topology as the training process
in this framework utilizes real-time data. Therefore, it can be
concluded that the proposed co-simulation framework involv-
ing real-time digital environment simulation can accelerate the
training process of RL agents.

To evaluate the proposed co-simulation framework in terms
of effective training of RL agents, the training was continued
and the corresponding actor DNN was saved for every 50
episodes. The optimized actor DNN was determined at the
1200th episode. Fig. 5 shows the plot of ∆ω,∆ω̇, and∆Pref

for the step load change mentioned in Section IV. It can be
observed that the SAC RL-based controller begins to provide
control signals immediately after the load change event at 170
sec. While comparing the performance of the SAC RL-based
controller with the system’s response without the controller,
it can be observed that the proposed SAC RL-based FFR can
reduce the nadir of the frequency and ROCOF significantly.
The controlled reference signal from SAC RL-based controller
settled at around 270 sec. It can be concluded that the proposed
co-simulation framework can accelerate the training process
of RL agents while maintaining the effective training of RL
agents.

VI. CONCLUSION

This research work developed a co-simulation framework
to accelerate the training process of the RL agent for power
system applications. The proposed co-simulation framework
involved an IP-based interface between Opal-RT and Python.
To test the effectiveness of the proposed co-simulation frame-
work, it was implemented to train an SAC-based RL agent
to provide FFR to the Cordova microgrid model. The co-
simulation performance was analyzed based on training du-
ration per episode and the ability of the trained RL agent to
provide FFR. Compared to the standard training approach,
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Fig. 5. Performance of the trained RL agent in terms of reduction in (a) change in frequency, (b) ROCOF, and (c) controlled reference signal from RL agent,
for a step load change of 20% to Cordova Benchmark

the proposed co-simulation framework demonstrated better
performance in terms of accelerating the training process of the
RL agent. The results also showed that the trained SAC-based
RL agent from the proposed co-simulation framework can
effectively provide FFR to the microgrid model. In conclusion,
the studies in this paper validate the feasibility of the proposed
co-simulation framework to accelerate the training process of
the RL agents for power system dynamics. Future studies will
focus on further feasibility testing of this approach by applying
it to a broader range of RL algorithms.
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